Ознакомительная версия. Доступно 9 страниц из 42
До промышленной революции товары производились небольшими закрытыми гильдиями ремесленников, которым приходилось затрачивать немало труда на создание даже простейших бытовых предметов. Кроме того, гильдии ревностно охраняли секреты своего мастерства. В результате товары зачастую оказывались дефицитными и дорогими. С появлением паровой машины и мощных станков стало возможным штамповать товары за крохотную долю прежней цены, что резко повысило совокупное богатство стран и подняло наш уровень жизни.
Преподавая законы Ньютона студентам технических специальностей, я всегда стараюсь подчеркнуть, что это не просто сухие и скучные уравнения, а что они изменили ход развития современной цивилизации, позволили создать то богатство и процветание, которые мы видим вокруг. Иногда мы даже демонстрируем студентам катастрофическое разрушение Такомского моста в штате Вашингтон в 1940 г., снятое на пленку, как поразительный пример того, что случается при неверном применении законов Ньютона.
Законы Ньютона, основанные на объединении физики небес с физикой Земли, помогли начать первую великую технологическую революцию.
Загадка электричества и магнетизма
Потребовалось еще 200 лет для того, чтобы произошел следующий крупный прорыв, ставший результатом изучения электричества и магнетизма.
Древние знали, что с магнетизмом можно совладать; изобретенный китайцами компас поставил магнетизм на службу людям и приблизил начало эпохи географических открытий. Но электричество вызывало страх. Считалось, что молнии – это проявления гнева богов.
Человеком, заложившим основы этой области знания, стал Майкл Фарадей – бедный, но изобретательный молодой человек, не имевший формального образования. Еще ребенком ему удалось получить место разнорабочего в лондонском Королевском институте. Обычный человек такого же низкого, как у него, социального положения так и мел бы полы, мыл бутылки и всю жизнь держался в тени. Но этот юноша был настолько неутомимым и любопытным, что начальство разрешило ему проводить эксперименты.
Они позволили Фарадею сделать ряд величайших открытий в области электричества и магнетизма. Он показал, что если взять магнит и перемещать его внутри проволочной петли, то в проволоке возникает электричество. Это было поразительное и важное наблюдение, поскольку взаимосвязь электричества и магнетизма тогда была совершенно неизвестна. Можно показать и обратное: что движущееся электрическое поле порождает магнитное поле.
Фарадей постепенно пришел к мысли, что на самом деле эти явления – две стороны одной медали. Это простое наблюдение дало начало веку электричества с гигантскими гидроэлектростанциями, которые освещают целые города. (В гидроэлектростанции вода вращает турбину, связанную с магнитом, который вызывает направленное движение электронов в проводах, то есть создает ток, поступающий в ваши розетки. Обратный эффект – превращение электрических полей в магнитные – обеспечивает, например, работу пылесоса. Электричество из розетки заставляет магнит вращаться, а он приводит в движение вакуум-насос, создающий всасывающую силу.)
Но Фарадей, не имея формального образования, не владел математическим аппаратом, который позволил бы ему корректно описать его замечательные открытия. Вместо этого он заполнял записные книжки странными изображениями силовых линий, напоминающими картину, которую образуют железные опилки под действием магнита. Кроме того, он придумал концепцию поля – одну из важнейших концепций физики. Поле состоит из силовых линий, заполняющих пространство. Магнитные линии окружают каждый магнит, а магнитное поле Земли исходит из северного магнитного полюса, распространяется в пространстве, а затем возвращается к южному магнитному полюсу. Даже на теорию всемирного тяготения Ньютона можно смотреть с позиции поля: Земля обращается вокруг Солнца, потому что она находится в его гравитационном поле.
Открытие Фарадея помогло объяснить происхождение магнитного поля, окружающего Землю. Поскольку Земля вращается, электрические заряды внутри нее тоже вращаются. Именно это постоянное движение внутри Земли порождает ее магнитное поле[7]. (Но все это оставляет открытым другой вопрос: откуда берется магнитное поле стержневого магнита, ведь в нем ничто не движется и не вращается? Мы вернемся к этой загадке позже.) Сегодня все известные природные взаимодействия Вселенной описываются на языке полей, впервые введенном Фарадеем.
Принимая во внимание громадный вклад Фарадея в зарождение электрической эры, физик Эрнест Резерфорд объявил его «величайшим ученым-экспериментатором всех времен».
Фарадей был необычен, по крайней мере для своего времени, еще и тем, что обожал привлекать к своим опытам публику и даже детей. Он был известен своими Рождественскими лекциями в лондонском Королевском институте, где все желающие могли посмотреть на демонстрацию электрического волшебства. Он входил в большую комнату, стены которой были покрыты металлической фольгой (сегодня ее называют клеткой Фарадея), а затем заряжал фольгу. Хотя металл был очевидно заряжен, сам исследователь находился в полной безопасности, поскольку электрическое поле существовало только снаружи комнаты, а внутри нее было нулевым. Сегодня этот эффект широко используется для защиты микроволновых печей и чувствительного оборудования от случайных электрических полей, а также для защиты самолетов, в которые часто ударяют молнии. (На съемках программы для Science Channel, которую я когда-то вел, я зашел в клетку Фарадея в Бостонском музее науки. Сильнейшие электрические разряды, до двух миллионов вольт, обрушивались на клетку и наполняли аудиторию громким треском. Но я ничего не чувствовал.)
Уравнения Максвелла
Ньютон показал, что объекты движутся под действием сил, которые можно описать при помощи дифференциального и интегрального исчисления. Фарадей показал, что электричество возникает под действием поля. Но для исследования полей требовался новый раздел математики, векторное исчисление, которым воспользовался Джеймс Клерк Максвелл. Можно сказать, что если Кеплер и Галилей заложили основы Ньютоновой физики, то Фарадей открыл путь для уравнений Максвелла.
Максвелл – виртуоз математики, совершивший поразительный прорыв в физике. Он понял, что поведение электричества и магнетизма, каким его описывал Фарадей и другие, можно обобщить и описать точным математическим языком. Один из законов гласил, что движущееся магнитное поле способно порождать электрическое поле. Другой закон утверждал обратное: что движущееся электрическое поле способно порождать магнитное поле.
Максвелла осенила гениальная идея. Что, если переменное электрическое поле создает магнитное поле, которое, в свою очередь, порождает другое электрическое поле, которое затем порождает другое магнитное поле и так далее? Блестящее озарение подсказало ему, что конечным продуктом этого стремительного перехода туда-сюда должна быть бегущая волна, в которой электрическое и магнитное поля непрерывно сменяют друг друга. Эта бесконечная цепь превращений живет собственной жизнью и создает бегущую волну из колеблющихся электрического и магнитного полей.
Ознакомительная версия. Доступно 9 страниц из 42