Nutr Diabetes. 2018;8(1):58. https://pubmed.ncbi.nlm.nih.gov/30405108/
7956
Dorling JL, Martin CK, Redman LM. Calorie restriction for enhanced longevity: the role of novel dietary strategies in the present obesogenic environment. Ageing Res Rev. 2020;64:101038. https://pubmed.ncbi.nlm.nih.gov/32109603/
7957
Appleton BS, Campbell TC. Inhibition of aflatoxin-initiated preneoplastic liver lesions by low dietary protein. Nutr Cancer. 1982;3(4):200–6. https://pubmed.ncbi.nlm.nih.gov/6128727/
7958
Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/
7959
Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. https://pubmed.ncbi.nlm.nih.gov/26021555/
7960
Fontana L, Adelaiye RM, Rastelli AL, et al. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget. 2013;4(12):2451–61. https://pubmed.ncbi.nlm.nih.gov/24353195/
7961
Fontana L, Adelaiye RM, Rastelli AL, et al. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget. 2013;4(12):2451–61. https://pubmed.ncbi.nlm.nih.gov/24353195/
7962
Rubio-Patiño C, Bossowski JP, De Donatis GM, et al. Low-protein diet induces IRE1a-dependent anticancer immunosurveillance. Cell Metab. 2018;27(4):828–42.e7. https://pubmed.ncbi.nlm.nih.gov/29551590/
7963
Orillion A, Damayanti NP, Shen L, et al. Dietary protein restriction reprograms tumor-associated macrophages and enhances immunotherapy. Clin Cancer Res. 2018;24(24):6383–95. https://pubmed.ncbi.nlm.nih.gov/30190370/
7964
Pili R, Fontana L. Low-protein diet in cancer: ready for prime time? Nat Rev Endocrinol. 2018;14(7):384–6. https://pubmed.ncbi.nlm.nih.gov/29765134/
7965
Gao X, Sanderson SM, Dai Z, et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572(7769):397–401. https://pubmed.ncbi.nlm.nih.gov/31367041/
7966
Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/
7967
Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J. 2011;10:107. https://pubmed.ncbi.nlm.nih.gov/21981968/
7968
Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta. 2006;1757(5–6):496–508. https://pubmed.ncbi.nlm.nih.gov/16574059/
7969
McIsaac RS, Lewis KN, Gibney PA, Buffenstein R. From yeast to human: exploring the comparative biology of methionine restriction in extending eukaryotic life span. Ann N Y Acad Sci. 2016;1363:155–70. https://pubmed.ncbi.nlm.nih.gov/26995762/
7970
Gorbunova V, Bozzella MJ, Seluanov A. Rodents for comparative aging studies: from mice to beavers. Age (Dordr). 2008;30(2–3):111–9. https://pubmed.ncbi.nlm.nih.gov/19424861/
7971
Zimmerman JA, Malloy V, Krajcik R, Orentreich N. Nutritional control of aging. Exp Gerontol. 2003;38(1–2):47–52. https://pubmed.ncbi.nlm.nih.gov/12543260/
7972
Swindell WR. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev. 2012;11(2):254–70. https://pubmed.ncbi.nlm.nih.gov/22210149/
7973
Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/
7974
Yu D, Yang SE, Miller BR, et al. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. 2018;32(6):3471–82. https://pubmed.ncbi.nlm.nih.gov/29401631/
7975
Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/
7976
Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/
7977
Yu D, Yang SE, Miller BR, et al. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. 2018;32(6):3471–82. https://pubmed.ncbi.nlm.nih.gov/29401631/
7978
Ruckenstuhl C, Netzberger C, Entfellner I, et al. Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genet. 2014;10(5):e1004347. https://pubmed.ncbi.nlm.nih.gov/24785424/
7979
Sharma S, Dixon T, Jung S, et al. Dietary methionine restriction reduces inflammation independent of FGF21 action. Obesity (Silver Spring). 2019;27(8):1305–13. https://pubmed.ncbi.nlm.nih.gov/31207147/
7980
Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/
7981
Brown-Borg HM, Rakoczy SG, Wonderlich JA, et al. Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell. 2014;13(6):1019–27. https://pubmed.ncbi.nlm.nih.gov/25234161/
7982
Harper AE, Benevenga NJ, Wohlhueter RM. Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev. 1970;50(3):428–558. https://pubmed.ncbi.nlm.nih.gov/4912906/
7983
López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction. Possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/
7984
Mori N, Hirayama K. Long-term consumption of a methionine-supplemented diet increases iron and lipid peroxide levels in rat liver. J Nutr. 2000;130(9):2349–55. https://pubmed.ncbi.nlm.nih.gov/10958834/
7985
Hidiroglou N, Gilani GS, Long L, et al. The influence of dietary vitamin E, fat, and methionine on blood cholesterol profile, homocysteine levels, and oxidizability of low density lipoprotein in the gerbil. J Nutr Biochem. 2004;15(12):730–40. https://pubmed.ncbi.nlm.nih.gov/15607646/