В данном разделе будет приоткрыта дверь в мир моделирования биопроцессов с точки зрения общих подходов к процессам, происходящим с веществом и процессам, происходящим с информацией. Принцип конвергентности (объединения) вещественных и информационных процессов будет выражен здесь через основное модулирующее уравнение, которое по своей сути является трансформированным первым началом термодинамики, составленным с учетом действия комплекса внешних сил, приводящих к структурной и информационной организации биовещества.
1. Моделирование биопроцессов
«Я принадлежу к тем крайне отчаянным кибернетикам, которые не видят никаких принципиальных ограничений в кибернетическом подходе к проблеме жизни и полагают, что можно анализировать жизнь во всей её полноте, в том числе и человеческое сознание со всей его сложностью, методами кибернетики. Продвижение в понимании механизма высшей нервной деятельности, включая и высшие проявления человеческого творчества, по-моему, ничего не убавляет в ценности и красоте творческих достижений человека».
А. Н. Колмогоров
Учитывая все те термодинамические моменты, которые мы разобрали в книге, мы подошли вплотную к новой ступени восприятия и интерпретации жизненных моментов с более высокой ступени научных взглядов, которые мы до этого разбирали.
А именно: до сего момента мы рассматривали организм человека как самый сложный и дискретный, из всех существующих на Земле. Мы разбирали его с точки зрения взглядов как на систему. То есть мы представляли организм как систему невероятной сложности, которая представлена определенными структурами.
На самом простом обывательско-медицинском уровне понимания, которому нас обучают в медицинских институтах и на биологических факультетах, это выглядит как совокупность разных систем: костно-мышечная, нервная, сердечно-сосудистая и так далее.
Мы также разобрали с Вами и системный подход, но на более высоком уровне, на уровне реализации физических законов. То есть, мы полностью разобрали, какие конкретные структуры в этой системе в виде сфер выполняют роль проводников физических законов, и каким образом они иерархично друг другу подчиняются и могут нивелировать (уравновешивать) действие второго закона термодинамики на организм в целом за счет непрерывно работающего принципа самообновления. Да, мы не вдавались при этом в биохимические дебри, не конкретизировали на молекулярном уровне. Но это нам и не было нужно, потому что мы разбирали глобально системы и их иерархичное взаимодействие и соподчинение, а дискретно, на уровне взаимодействия биомолекул, эти вопросы рассмотрены в огромном количестве трудов по биохимии.
Исследуя организм как систему на данном термодинамическом уровне, я подошел к тому, что можно не останавливаться на этом, а, разобрав это как ступень нашего понимания о работе живого вещества, сделать еще один шаг для более детального понимания и моделирования живого вещества. Этот шаг необходим для создания научной теории, которая позволяла бы анализировать и прогнозировать принципы течения данных процессов, выявляя скрытые пока от нас механизмы биорегуляции и биоэнергетики.
Если мы возьмем любые источники по системным взглядам в биологии, то мы найдем там целую гамму всевозможных описаний, систем, подсистем и так далее. И если мы спросим себя, какую роль играет сам процесс, который осуществляет система, мы поймем, что всё сводится к тому, что сам процесс зависит от уровня сложности системы, которая его осуществляет. То есть, существуют некоторые системы разной сложности, иерархичности и соподчиненности, которые осуществляют очень сложные процессы. Сегодня это основное психологическое клише, прочно закрепившееся в наших умах!