линий водорода, поскольку взрывающийся белый карлик по большей части лишен какой-либо водородной оболочки. А вот коллапс ядра у массивных звезд, богатых водородом, приводит к образованию сверхновых типа II, в спектрах которых эмиссионных линий водорода много. Все сверхновые типа Ia возникают из остатков, практически равных по массе, и обладают одинаковой полной светимостью, поэтому их можно использовать как стандартные свечи при определении расстояний до галактик, в которых эти звезды находятся. Так астрономы достоверно подсчитали расстояния до галактик, удаленных от Земли на миллиард световых лет.
Нейтронные звезды
На массивной звезде с бездействующим ядром, масса которой превышает 1,4 M⊙, под воздействием гравитации произойдет имплозия — взрыв, направленный вовнутрь, — после чего она превратится либо в нейтронную звезду, либо в черную дыру. Мы уже говорили, что это приведет к взрыву окружающих звездных оболочек, и перед наблюдателем этот взрыв предстанет в виде сверхновой II типа. Астрономы полагают, что разделительная линия, определяющая судьбу такой звезды, проходит на уровне примерно 3 M⊙. Для нейтронной звезды сдавливание прекращается, когда остаток достигает плотности ядра — точки, в которой вырожденные электроны, соединившись с протонами в атомных ядрах углерода и кислорода, образуют нейтроны. После этого перед нами, по сути, возникает гигантское атомное ядро, состоящее исключительно из вырожденных нейтронов. Остаток звездного ядра приходит в это состояние после того, как коллапс сожмет его до размеров города — около 25 км в поперечнике. Итоговая плотность в 1014 г/см3 превышает плотность белого карлика в 100 миллионов раз. Чайная ложка вещества нейтронной звезды имела бы массу, эквивалентную массе Эвереста, — и если бы эту ложку уронили на поверхность Земли, ее содержимое прошло бы сквозь каменную толщу, как пуля сквозь воздух, а затем металось бы от места удара к другой стороне Земли и обратно, наподобие игрушечной катушки йо-йо.
В 1930-х годах, вскоре после открытия нейтронов, астрономы впервые выдвинули гипотезу о том, что взорвавшиеся остатки массивных звезд могут существовать как нейтронные звезды. Но только в 1960-х годах им удалось получить убедительные доказательства реального присутствия этих невероятных объектов в космосе. В 1967 году аспирантка Джоселин Белл (позже Белл Бернелл) и ее научный руководитель Энтони Хьюиш впервые заметили странности с радиосигналами, регистрируемыми в Маллардовской радиоастрономической обсерватории в Англии. Что-то в космических безднах вспыхивало и гасло в необычайно регулярном ритме. Последующие наблюдения, проведенные несколькими радиообсерваториями, выявили десятки мерцающих источников радиоизлучения по всей небесной сфере. Эти источники пульсировали с периодичностью от нескольких секунд до нескольких миллисекунд, и хотя изначально их в шутку назвали LGM (от little green men, «маленькие зеленые человечки»), позже они получили более почтенное наименование «пульсары», которое с тех пор за ними и закрепилось.
Астрономы уже знали о пульсирующих звездах, но период их пульсаций занимал от нескольких часов до нескольких дней и даже недель. Ни одна обычная звезда не смогла бы пульсировать с интервалом от секунды до миллисекунды: за несколько таких пульсаций ее просто разорвало бы на куски, причем не смог бы устоять даже белый карлик. Возможно, если бы он вращался, то мог бы испускать излучение по направлению к нам при каждом обороте своего остатка — но для объяснения феномена пульсара требовалось допустить вращение столь стремительное, что гравитация, характерная для белого карлика, не смогла бы удержать его от разрыва. Оставалась лишь модель нейтронной звезды, постулированная еще в 1930-х годах. Такая звезда, масса которой намного превышала массу Солнца, а объем был сравним с объемом сибирского озера Байкал, обладала бы достаточно сильной самогравитацией, чтобы противостоять своему безудержному вращению.
Раскрыть тайну пульсара можно, если немного схитрить и позволить полюсам интенсивного магнитного поля нейтронной звезды немного отклониться от оси ее вращения. Здесь, на Земле, пусть и в меньшей степени, наблюдается столь же асимметричное взаимное расположение соответствующих осей. В таком случае магнитные полюса описывают вокруг осей вращения круги (рис. 13.1). Открытые силовые линии магнитного поля на полюсах обеспечивают выброс электромагнитного излучения, которое проходит сквозь области Галактики подобно лучу маяка, и если Земля случайно оказывается на пути этого луча, то наши радиотелескопы улавливают регулярные пульсации излучения. В итоге астрономы объясняют пульсары как нейтронные звезды, у которых магнитные оси время от времени проходят через наш луч зрения. Поскольку эта модель работает как никакая другая, она получила широкое признание.
Большинство нейтронных звезд не проявляют феномена пульсара, поскольку лучи, испущенные ими с обоих полюсов, не проходят через наш луч зрения. Впрочем, некоторые из этих чрезвычайно малых объектов были обнаружены непосредственно в центрах остатков молодых сверхновых. Все еще неимоверно горячие после имплозии, приведшей к их появлению на свет, новорожденные нейтронные звезды обильно излучают в рентгеновском диапазоне. Остаток сверхновой Кассиопея А — отличный пример нейтронной звезды, которая не является пульсаром. Совсем недавно, в 2017 году, Кассиопея A и ее нейтронная звезда, которым, по нашим наблюдениям, всего 330 лет, были сфотографированы космической рентгеновской обсерваторией «Чандра» (см. chandra.harvard.edu/photo/2017/casa_life/).
Рис. 13.1. Схематический рисунок быстро вращающейся нейтронной звезды, испускающей электромагнитное излучение вдоль своей магнитной оси. Считается, что именно такая конфигурация, для которой характерны значительная плотность, сильная намагниченность и высокая энергия, порождает феномен пульсара. (Материалы любезно предоставлены Roy Smits, Wikipedia Commons.)
Подобно белым карликам, нейтронные звезды могут становиться очень «энергичными», когда находятся в тесной парной связи с другими звездами, более близкими к нормальным. Подобно тяготению белого карлика, мощная гравитация нейтронной звезды поглощает внешнюю атмосферу звезды-спутника. Только в данном случае риск намного выше, поскольку нейтронная звезда, в сравнении с белым карликом, обладает поверхностной гравитацией, которая больше в 300 000 раз. В итоге происходят взрывы такой силы, что они могут объяснить ряд наиболее колоссальных выбросов энергии, случившихся в космосе. Эти самые экстремальные из так называемых катаклизмических переменных излучают свои тревожные сигналы как в рентгеновском, так и в гамма-диапазоне.
Черные дыры
Общее определение черной дыры — это область в пространстве, из которой не может вырваться ничто, даже свет. Другими словами, чтобы выбраться из нее, пришлось бы двигаться быстрее скорости света. Считается, что такие скорости физически невозможны.
Черной дырой может стать любой материальный сгусток. Самое сложное — это сжать его настолько сильно, чтобы все его вещество уместилось в пределах горизонта событий черной дыры, где гравитационная энергия едва способна сдержать кинетическую энергию любого фотона. У невращающейся черной дыры горизонт событий соответствует гравитационному радиусу, или радиусу Шварцшильда (RS), который можно выразить в виде формулы: RS