Ознакомительная версия. Доступно 25 страниц из 123
Отчасти спасло ситуацию то, что сама установка CMS достаточно компактна, и экспериментаторы вместе с инженерами решили собрать ее заранее. Разумеется, на поверхности строить и ставить на место отдельные узлы установки намного проще и быстрее — ведь здесь достаточно места и можно многие операции проводить параллельно. Кроме того, можно было заниматься сборкой, не отвлекаясь на то и дело возникавшие проблемы с грунтом.
Однако нетрудно представить себе, сколь устрашающе выглядела перспектива спуска этой громадной установки в готовое гнездо — я как раз подумала об этом во время первого визита на CMS в 2007 г. В самом деле, опустить установку на место оказалось очень непросто. Самый крупный ее узел опускали в громадную выемку при помощи специального крана; происходило это ужасающе медленно, со скоростью 10 м в час. Без такого «черепашьего шага» и точнейшей системы мониторинга было не обойтись — ведь между установкой и стенками камеры был всего лишь десятисантиметровый зазор. С ноября 2006 г. по январь 2008 г. в камеру было опущено 15 крупных узлов детектора. Время было рассчитано точно, и последняя часть установки встала на место незадолго до запланированной даты пуска БАКа.
Вслед за проблемами CMS на строительстве самого БАКа в июне 2004 г. разразился новый кризис; были выявлены нарушения в системе распределения жидкого гелия, известной как QRL. Инженеры CERN, разбиравшиеся в проблеме, обнаружили, что французская фирма, строившая систему, заменила проектный материал тем, что Лин назвал «пятидолларовой времянкой». Новый материал пошел трещинами, что привело к термическому сжатию внутренних труб. Дефектная деталь оказалась не единственной, и проверять пришлось все соединения в системе.
К тому моменту криогенная линия была уже частично установлена, а многие детали изготовлены и дожидались своей очереди на складах. Чтобы избежать новых задержек, инженеры решили сами отремонтировать уже изготовленные компоненты. Работа по изготовлению новых деталей, а также необходимость извлекать и заново устанавливать крупные узлы оборудования обошлись проекту в годовую задержку. По крайней мере это намного меньше, чем те десять лет, на которые могла бы, по мнению Лина и др., растянуться вся эта история, если бы в дело вступили юристы.
Без труб и готовой криогенной системы устанавливать магниты было невозможно. Поэтому 1000 магнитов стояла на парковочной площадке Центра, дожидаясь своей очереди. Даже с учетом того, что на местной парковке частенько гостят представительские BMW и «Мерседесы», ничего дороже, чем эти магниты суммарной стоимостью миллиард долларов, эта площадка никогда не видела. Никто их не украл, но открытая парковка — не лучшее место для хранения высокотехнологичного оборудования; это неизбежно повлекло за собой новые задержки, связанные тем, что магниты перед установкой пришлось восстанавливать до первоначального состояния.
В 2005 г. возник еще один едва ли не фатальный кризис, на этот раз связанный с внутренним триплетом, изготовленным в американской Лаборатории имени Ферми и в Японии. Внутренний триплет обеспечивает окончательную фокусировку протонных пучков перед столкновением. Он состоит из трех квадрупольных магнитов, снабженных криогенной системой и системой распределения энергии, — отсюда и название. Этот самый внутренний триплет не выдержал вакуумных испытаний. Хотя отказ, естественно, означал неприятности и задержки, инженеры все же смогли привести триплет в норму прямо в тоннеле, так что потери времени оказались не такими уж большими.
В целом 2005 г. оказался более успешным, чем его предшественник. В феврале была сдана под монтаж камера для CMS. Тогда же произошло и другое знаковое событие — в тоннель был спущен первый криодипольный магнит. Без магнитной конструкции БАК невозможен, поэтому установке и наладке криодипольных магнитов придавалось громадное значение. Благодаря тесному сотрудничеству Центра с частными промышленными предприятиями магниты были изготовлены в срок и обошлись сравнительно недорого. Конструкция магнита была разработана в Центре ядерных исследований, но производились они на предприятиях Франции, Германии и Италии. Первоначально (в 2000 г.) инженеры, физики и конструкторы CERN разместили заказ на 30 диполей, которые затем тщательно исследовали с точки зрения качества и стоимости; лишь после этого (в 2002 г.) была заказана основная масса магнитов — более тысячи штук. Стремясь обеспечить качество, единообразие и минимизировать цену, CERN сохранил за собой ответственность за заказ основных компонентов и сырья. При этом Центру пришлось перевезти по Европе 120 000 т различных материалов — десять больших фур каждый день колесили по европейским дорогам на протяжении четырех лет. И это всего лишь небольшая часть предприятия по строительству БАКа.
После доставки готовые магниты были протестированы и аккуратно опущены через вертикальную шахту в тоннель у подножья гор Юра. Оттуда на специальных тележках их доставляли на свои места вдоль тоннеля. Поскольку магниты огромны и лишь несколько сантиметров отделяло их при транспортировке от стенок тоннеля, тележки управлялись автоматически; ориентировались они по нарисованной на дне тоннеля линии, которую распознавали оптические датчики. Чтобы по возможности избежать вибраций, тележка двигалась со скоростью около мили в час. Это означает, что на транспортировку магнита от места спуска на противоположную сторону кольца уходило семь часов.
В 2006 г., после пяти лет строительства, был получен последний из 1232 диполей. В 2007 г. главной новостью стало то, что последний магнит опущен в тоннель и установлен на место; затем было успешно проведено первое пробное охлаждение до целевой температуры -271 градусов по Цельсию секции ускорителя длиной 3,3 км. Тогда же впервые все кольцо магнитов было подключено к источнику энергии, и в обмотках сверхпроводящих магнитов пробной секции тоннеля начали циркулировать токи в несколько тысяч ампер. Это событие по традиции тоже было отпраздновано с шампанским.
Непрерывный охлаждающий контур был замкнут в ноябре 2007 г., и все шло неплохо, пока не грянула новая катастрофа, связанная на этот раз с так называемыми стыковочными модулями ΡΙΜ. Мы в США не всегда очень уж внимательно отслеживали ситуацию на БАКе, но на этот раз новость разлетелась мгновенно. Коллега из Центра поделился со мной серьезной обеспокоенностью: специалисты опасались, что отказ одного из элементов конструкции может обернуться глобальной проблемой. Что если аналогичные элементы по всей длине кольца имеют тот же производственный дефект?
Проблема связана с температурной разницей почти в 300 градусов между только что собранным «теплым» коллайдером и тем же коллайдером в охлажденном рабочем состоянии. Естественно, такая разница очень сильно действует на материалы, из которых изготовлена установка. Так, металлические части сжимаются при охлаждении и расширяются при нагревании. Сами диполи во время рабочей фазы уменьшаются в размерах на несколько сантиметров. Для 15–метрового объекта это, казалось бы, немного, но для поддержания сильного и однородного магнитного поля, способного корректно провести протонные пучки по тонкой трубке, обмотки должны быть расположены в пространстве с точностью до десятой доли миллиметра.
Чтобы компенсировать тепловое охлаждение и нагрев, диполи снабжены специальными пальцами, которые частично выходят из пазов, обеспечивая электрический контакт при охлаждении установки, а при нагреве вновь прячутся в пазы. Однако из‑за некачественных заклепок эти пальцы, вместо того чтобы уйти в пазы, были смяты. Хуже того, из‑за этого могли пострадать все соединения, и было совершенно не ясно, какие из них дефектны, а какие нет. Стояла сложнейшая задача — распознать и заменить каждую дефектную заклепку, не затягивая при этом работы на многие годы.
Ознакомительная версия. Доступно 25 страниц из 123