Он разделял убеждение Эйнштейна в том, что мы живем в упорядоченной Вселенной, созданной Богом, который «не играет в кости»; он воспринял представления Лейбница о characteristica universalis и calculus ratiocinator… Его искренняя вера (множество раз доказанная) в мощь математической интуиции привела Гёделя к созданию аксиом, которые, как он считал, могли бы помочь ему доказать гипотезу континуума, найти последовательное доказательство арифметики, основанной на очевидных, пусть даже и абстрактных, принципах. Гёдель ожидал, что астрономические наблюдения со временем подтвердят его оригинальные представления о вращении Вселенной.
Гёдель был платоником, он верил, что числа и другие математические сущности обладают особым бытием, независимым от физической Вселенной. 26 августа 1930 года Гёдель в венском кафе «Рейхсрат» обсуждал идеи неполноты математических систем с несколькими логиками и интеллектуалами, включая Рудольфа Карнапа и Джона фон Неймана. В заметках, сделанных после этой встречи, Гёдель писал:
Люди не способны принять мои результаты из-за антиплатонического предрассудка. Этот факт означает, что предрассудки вредны.
Воззрения Платона хорошо согласуются с убеждением в том, что были сотворены некоторые глубинные структуры, трансцендентные в отношении материальной Вселенной. В философии Платона вычисления, числа и другие элементы математики существуют независимо и самостоятельно. Они не «развились» и не возникли «из ничего», а являются, вероятно, производными какой-то бесконечной мудрости, силы или сущности, пронизывающей Вселенную и превосходящей ее. Однако математика также содержит ключ к пониманию физической Вселенной и ее законов.
С другой стороны, математика демонстрирует нам собственную ограниченность. Благодаря теоремам Гёделя о неполноте мы достоверно знаем (ибо Гёдель строго доказал свои теоремы), что никогда не сможем познать некоторые истины о математической системе. К ним относится и модель строения физической Вселенной.
Само допущение о том, что Бог, скорее всего, «находится» где-то за пределами Вселенной, в которой мы обитаем, позволяет предположить, что вопрос о существовании Бога – одна из гёделевских математических истин, которая навсегда останется недоступной для нашего познания. Доподлинно мы не можем этого знать, так как не понимаем, как началась Вселенная, и не знаем, что ей предшествовало. Однако, поскольку мы уже признали полное отсутствие у нас информации о структурах, приведших к возникновению нашей Вселенной 13,7 миллиарда лет назад, то остается признать и высокую вероятность того, что человек никогда не получит достоверных знаний о том, существует Бог или нет.
Когда я брал интервью у нобелевского лауреата Стивена Вайнберга в связи с проблемами человеческого знания о Вселенной и ее законах, ученый сказал: «Я не знаю, способен ли человеческий мозг овладеть полным знанием о Вселенной, но надеюсь, что он сможет это сделать. Возможно, это займет тысячу лет… Греки предсказали существование атомов, но потребовалось две тысячи лет для того, чтобы это доказать». Возможно, законы природы действительно поддаются расшифровке, как думает Вайнберг. Но вопрос о существовании Бога намного сложнее, он лежит за пределами науки, и решить его математическими способами едва ли удастся.
Наше обсуждение математики и бесконечности указывает на высокую вероятность того, что величайшая тайна мироздания – существует ли Бог? – пока остается непостижимой в рамках логико-математического подхода. Из работ по космологии мы знаем, что даже великие физики-теоретики не могут сказать нам, что предшествовало Вселенной, или ответить на математический вопрос: какое множество содержит нашу Вселенную? Существует бездна других вопросов о нашем существовании, о том, из чего состоит Вселенная и как она возникла. И на них невозможно дать математически обоснованный ответ. Мы можем вечно спорить о существовании Бога, но в этом споре, вероятно, никогда не родится истина.