Глава 9
Как звезды светят и как они умирают
Нейтрон был открыт в 1932 году, когда Чандра был еще энергичным молодым аспирантом. Электрически нейтральную частицу с массой близкой к массе протона обнаружил Джеймс Чедвик, молодой коллега Резерфорда, работавший с ним в Кавендишской лаборатории в Кембридже. Это открытие взволновало весь научный мир. Физики сразу же ухватились за нейтрон как за панацею для определения структуры атомного ядра и начали разрабатывать теории о силах связывания ядерных частиц и о распаде ядер. Но ни Чандра, который в то время был в Кавендишской лаборатории, ни большинство других опытных астрофизиков не поняли, сколь велико значение открытия нейтрона для астрофизики. Кавендиш был бесспорным центром ядерной физики, но физиков и астрофизиков разделяла огромная пропасть. Открытие нейтрона помогло ученым понять, что финал эволюции звезд — гораздо более впечатляющее событие, чем это можно было себе ранее представить. Например, у Милна сразу же возник интерес к образованию нейтронов и связи этого процесса со строением космических тел. Он предположил, что электроны и протоны могут сливаться в нейтроны при высоких температуре и плотности внутри звезд, а выделяющаяся в этом процессе энергия будет играть важную роль в процессе их остывания. Однако на этом он и остановился. Физики развили идею Милна в своих теориях о строении звезд. Это стало началом долгого пути, который впоследствии привел к повторному открытию предела Чандры и полному подтверждению его правоты.
Открытие нейтрона ознаменовало рождение одной из самых интересных областей физики — ядерной физики. Ранее ученые считали, что ядро состоит из протонов и электронов, а положительный заряд ядра компенсируется отрицательным зарядом электронов, вращающихся вокруг него. В результате атом становится электрически нейтральной частицей. Однако массы протонов и электронов не совпадали с атомной массой элемента. Теперь с нейтронами, входящими в ядро наряду с протонами, все было в порядке.
Но у новой модели ядра, состоящего из нейтронов и протонов, тоже были недостатки. Например, непонятно, что связывает нейтральные нейтроны и заряженные протоны, ведь притягиваются только противоположные заряды. Однако и без полной ясности природы ядерных сил уже можно было начинать строить теории о роли новооткрытых нейтронов в эволюции звезд. Само существование нейтрона разожгло воображение «белой вороны» физики — швейцарца Фрица Цвикки.
На одной из фотографий, снятой на память о визите Альберта Эйнштейна в Калифорнийский технологический институт (Калтех) в январе 1931 года, около президента Калтеха Роберта А. Милликена можно увидеть улыбающегося человека. Это — Цвикки. Он был одним из наименее приятных в общении ученых Калтеха и, скорее всего, сам занял место в первом ряду. Цвикки родился в 1898 году, диссертацию защитил в Федеральном технологическом институте в Цюрихе. Всю жизнь он оставался горячим патриотом своей страны и регулярно возвращался — дабы участвовать в выборах — в свой родной кантон Гларус. Цвикки попал в Калифорнийский технологический институт благодаря Милликену.
57-летний Милликен, лауреат Нобелевской премии по физике, был блестящим экспериментатором. В 1910–1921 годах он создал отделение физики в Чикагском университете. В 1921 году Джордж Эллери Хейл, которому лучше всех удавалось доставать деньги для развития астрономии, пригласил его на работу в небольшой институт в пригороде Лос-Анджелеса Пасадине. Этот институт был переименован в Калифорнийский технологический институт, и именно Милликен превратил его в крупнейший научный центр.
В 1925 году Милликен пригласил в Калтех Фрица Цвикки. Цвикки считал себя гением. Он действительно был очень талантлив, но имел репутацию человека с тяжелым характером и постоянно выдвигал различные фантастические прожекты. Однако Милликен был всегда готов предоставить ему шанс и поддерживал его. А Цвикки вел себя некрасиво, злобно критиковал коллег-физиков и считал большинство из них «круглыми дураками». Поэтому Милликен предложил Цвикки переключиться на астрономию. Цвикки так и сделал, но вскоре стал враждовать и с астрономами. Однако его достижения не подвергались сомнению, особенно интересны были его наблюдения удивительно ярких звезд, которые назвали новыми. Чандра прослушал его лекцию по новым звездам в Кембридже осенью 1930 года.