Ознакомительная версия. Доступно 31 страниц из 154
Второй способ исключения доминируемых стратегий и упрощения анализа таблицы игры сводится к тому, чтобы найти стратегии, которые ни при каких условиях не могут стать оптимальным ответным ходом на любой выбор, сделанный другим игроком. В данном примере выбор цены 42 доллара не может быть оптимальным ответным ходом BB на любой выбор RE в пределах того диапазона цен, который мы здесь рассматриваем. Следовательно, RE может смело рассуждать так: «Что бы ни думали в BB по поводу моего выбора, они ни за что не выберут цену 42 доллара».
Очевидно, что любая доминируемая стратегия ни при каких обстоятельствах не может быть оптимальным ответным ходом. Полезнее проанализировать вариант, когда BB выберет цену 39 долларов. Эта стратегия может быть почти при любых условиях исключена из рассмотрения по той причине, что она не может быть оптимальным ответным ходом. Выбор цены 39 долларов оптимален только в случае, если RE выберет цену 38 долларов. Если мы знаем, что стратегия 38 долларов доминируемая, мы можем сделать вывод о том, что выбор BB цены 39 долларов ни при каких условиях не может быть оптимальным ответным ходом на любой ход RE. В таком случае преимущество поиска ответных ходов, не относящихся к числу оптимальных, состоит в возможности исключения тех стратегий, которые не являются доминируемыми, но все равно не подлежат выбору.
Аналогичную процедуру анализа можно выполнить и для другого игрока. Стратегии RE, соответствующие выбору цены 42 и 38 долларов, следует исключить из рассмотрения, после чего в таблице выигрышей для этой игры останется только три строки и три столбца:
В этой упрощенной игре у каждой компании есть доминирующая стратегия, а именно 40 долларов. Следовательно, согласно правилу № 2 (сформулированному вглаве 3) это и есть решение игры.
Стратегия выбора цены 40 долларов не доминирующая в исходной игре с большим числом вариантов. Например, если RE подумает, что BB назначит на свой товар цену 42 доллара, тогда прибыль RE от установления цены 41 доллар (43,260 доллара) будет больше, чем в случае выбора цены 40 долларов (43,200 доллара). Исключение некоторых стратегий может открыть путь для исключения других стратегий во втором раунде игры. В данном примере хватило всего двух раундов для того, чтобы точно определить исход игры. В других случаях может понадобиться больше раундов, но даже тогда диапазон возможных результатов игры можно в какой-то мере сузить, но не до единственного решения.
Равновесие Нэша проявляется, если последовательное исключение доминируемых стратегий (или стратегий, которые ни при каких условиях не могут быть оптимальными ответными ходами) и выбор доминирующих стратегий действительно приводит к единственно возможному исходу игры. Это и есть простой способ, позволяющий найти равновесие Нэша. Таким образом, описанный процесс поиска равновесия Нэша можно кратко сформулировать в виде двух правил.
ПРАВИЛО № 3: одну за другой исключите из рассмотрения все доминируемые стратегии и стратегии, которые ни при каких условиях не могут быть оптимальными ответными ходами.
ПРАВИЛО № 4: исчерпав все простые способы поиска доминирующих или исключения доминируемых стратегий, приступайте к поиску той ячейки таблицы игры, в которой присутствует пара взаимно оптимальных ответных ходов, – это и есть равновесие Нэша для данной игры.
Игры с бесконечным множеством стратегий
В каждой из предыдущих версий ценовой игры, которые мы рассматривали до сих пор, у каждой компании число вариантов цен было ограниченное: только 80 и 70 долларов вглаве 3 и от 42 до 38 долларов с возможностью изменения цены на 1 доллар – в данной главе. Мы сделали это, чтобы на упрощенных примерах объяснить вам такие концепции, как дилемма заключенных и равновесие Нэша. В реальной жизни цены могут быть выражены в любом количестве долларов и центов; в сущности, их можно выбирать из непрерывного диапазона чисел.
Наша теория легко справляется с таким расширением диапазона цен, прибегнув к базовому школьному курсу алгебры и геометрии. Мы можем представить цены, которые две компании назначают на свои товары, в виде двумерного графика, расположив цены RE по горизонтальной оси (оси Х), а цены BB по вертикальной (оси Y). Оптимальные ответные ходы можно отобразить на этом графике, вместо того чтобы выделять соответствующие показатели прибыли жирным шрифтом в таблице выигрышей для данной игры.
Проанализируем самый первый пример, в котором одна рубашка обходилась каждому магазину в 20 долларов. Мы опускаем здесь математические выкладки и просто сообщаем полученный результат[58]. Формула ответного хода BB с учетом цены RE (или мнения BB относительно цены, которую установит RE) выглядит так:
Оптимальная ответная цена BB = 24 + 0,4 × цена RE (или цена, которую выберет RE, по мнению ВВ)
На графике этой формуле соответствует более пологая кривая. Очевидно, что на каждое сокращение цены RE в компании BB должны ответить снижением своей цены, но в меньшем размере, а именно на 40 центов. Таков результат расчетов BB, обеспечивающий оптимальное соотношение между потерей клиентов и принятием более низкой маржи прибыли.
Ознакомительная версия. Доступно 31 страниц из 154