Топ за месяц!🔥
Книжки » Книги » Разная литература » Занимательная астрономия - Яков Исидорович Перельман 📕 - Книга онлайн бесплатно

Книга Занимательная астрономия - Яков Исидорович Перельман

44
0
На нашем литературном портале можно бесплатно читать книгу Занимательная астрономия - Яков Исидорович Перельман полная версия. Жанр: Книги / Разная литература. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 43 44 45 ... 50
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 10 страниц из 50

ее, как говорят астрономы.

Рис. 85. Солнце отклоняет планету Р от ее первоначального прямого пути, заставляя ее описывать кривую линию

Рис. 86. Геометрическое доказательство, что планеты движутся вокруг Солнца по коническим сечениям (подробности в тексте)

Постараемся теперь подобным же образом уяснить второй закон движения планет — так называемый закон площадей. Рассмотрите внимательно рис. 21 (с. 52). Двенадцать намеченных на ней точек делят ее на 12 участков; они не равны по длине, но нам известно, что они проходятся планетой в одинаковое время. Соединив точки 1,2,3 и т. д. с Солнцем, получите 12 фигур, которые приближенно можно представить треугольниками, если соединить точки хордами. Измерив их основания и высоты, вычислите их площади. Вы убедитесь, что все треугольники имеют одинаковую площадь. Другими словами, вы приходите ко второму закону Кеплера:

Радиусы-векторы планетных орбит описывают в равные промежутки времени равные площади.

Итак, циркуль до известной степени помогает постичь первые два закона планетных движений. Чтобы уяснить себе третий закон, сменим циркуль на перо и проделаем несколько численных упражнений.

Падение планет на Солнце

Задумывались ли вы над тем, что произошло бы с нашей Землей, если бы, встретив препятствие, она внезапно была остановлена в своем беге вокруг Солнца? Прежде всего, конечно, тот огромный запас энергии, которым наделена наша планета как движущееся тело, превратится в теплоту и нагреет земной шар. Земля мчится по орбите в десятки раз быстрее пули, и нетрудно вычислить, что переход энергии ее движения в теплоту породит чудовищный жар, который мгновенно превратит наш мир в исполинское облако раскаленных газов…

Но если бы даже Земля при внезапной остановке избегла этой участи, она все-таки обречена была бы на огненную гибель: увлекаемая Солнцем, она устремилась бы к нему с возрастающей скоростью и погибла бы в его пламенных объятиях.

Это роковое падение началось бы медленно, с черепашьей скоростью: в первую секунду Земля приблизилась бы к Солнцу только на 3 мм. Но с каждой секундой скорость ее движения прогрессивно возрастала бы, достигнув в последнюю секунду 600 км. С этой невообразимой скоростью земной шар обрушился бы на раскаленную поверхность Солнца.

Интересно вычислить, сколько времени длился бы этот гибельный перелет, долго ли продолжалась бы агония нашего обреченного мира. Сделать этот расчет поможет нам третий закон Кеплера, который распространяется на движение не только планет, но и комет и всех вообще небесных тел, движущихся в мировом пространстве под действием центральной силы тяготения. Закон этот связывает время обращения планеты (ее «год») с ее расстоянием от Солнца и гласит:

Квадраты времен обращения планет относятся между собой, как кубы больших полуосей их орбит.

В нашем случае мы можем земной шар, прямо летящий к Солнцу, уподобить воображаемой комете, движущейся по сильно вытянутому, сжатому эллипсу, крайние точки которого расположены: одна — на земной орбите, другая — в центре Солнца. Большая полуось орбиты такой кометы, очевидно, вдвое меньше большой полуоси орбиты Земли.

Вычислим же, каков должен был бы быть период обращения этой воображаемой кометы.

Составим пропорцию на основании третьего закона Кеплера:

Период обращения Земли равен 365 суткам; примем за единицу большую полуось ее орбиты, и тогда большая полуось орбиты кометы выразится дробью 0,5. Пропорция наша принимает теперь такой вид:

откуда

Следовательно,

Нас интересует, собственно, не полный период обращения этой воображаемой кометы, а половина периода, т. е. продолжительность полета в один конец — от земной орбиты до Солнца: это и будет искомое время падения Земли на Солнце. Вычислим же его:

Значит, чтобы узнать, во сколько времени Земля упала бы на Солнце, нужно продолжительность года разделить на √32, т. е. на 5,65. Это составит круглым счетом 65 дней.

Итак, мы вычислили, что Земля, внезапно остановленная в своем движении по орбите, падала бы на Солнце в течение более чем двух месяцев.

Легко видеть, что полученная выше на основании третьего закона Кеплера простая формула применима не к одной только Земле, но и к каждой другой планете и даже к каждому спутнику. Иначе говоря, чтобы узнать, во сколько времени планета или спутник упадут на свое центральное светило, нужно период их обращения разделить на √32, т. е. на 5,65.

Поэтому, например, Меркурий — самая близкая к Солнцу планета, — обращающийся в 88 дней, упал бы на Солнце в 151/2 дня. Нептун, один «год» которого равняется 165 нашим годам, падал бы на Солнце 29 лет, а Плутон — 44 года.

Во сколько времени упала бы на Землю Луна, если бы внезапно остановился ее бег? Делим время обращения Луны — 27,3 дня — на 5,6: получим почти ровно 5 дней. И не только Луна, но и всякое вообще тело, находящееся от нас на расстоянии Луны, падало бы на

Землю в течение 5 дней, если только ему не сообщена какая-нибудь начальная скорость и оно падает, подчиняясь лишь действию земного притяжения (влияние Солнца мы ради простоты здесь исключаем). Пользуясь той же формулой, нетрудно проверить продолжительность перелета на Луну, указанную Ж. Верном в романе «Из пушки на Луну»[49].

Наковальня Вулкана

Сейчас выведенным правилом воспользуемся для решения любопытной задачи из области мифологии. Древнегреческий миф о Вулкане повествует, между прочим, ч то этот бог уронил однажды свою наковальню, и она падала с неба целых 9 дней, прежде чем долетела до Земли. По мнению древних, срок этот отвечает представлению о невообразимой высоте небес, где обитают боги; ведь с вершины Хеопсовой пирамиды наковальня долетела бы до Земли всего в 5 секунд!

Нетрудно, однако, вычислить, что Вселенная древних греков, если измерять ее по этому признаку, была бы, по нашим понятиям, довольно тесновата.

Мы уже знаем, что Луна падала бы на Землю в течение 5 дней, мифическая же наковальня падала 9 дней. Значит, «небо», с которого упала наковальня, находится дальше лунной орбиты. На много ли дальше? Если умножим 9 дней на √32, мы узнаем величину того периода, в течение которого наковальня обращалась бы вокруг земного шара, будь она спутником нашей планеты: 9 · 5,6 = 51 суткам. Применим теперь к Луне и к нашему

Ознакомительная версия. Доступно 10 страниц из 50

1 ... 43 44 45 ... 50
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Занимательная астрономия - Яков Исидорович Перельман», после закрытия браузера.

Комментарии и отзывы (0) к книге "Занимательная астрономия - Яков Исидорович Перельман"