Ознакомительная версия. Доступно 9 страниц из 42
Надеюсь, что эта книга помогла составить общее понимание о том, как работают системы Больших данных и для чего они вообще применяются.
Появляются новые инструменты и фреймворки, которые позволяют работать с данными максимально широкому кругу людей. И поэтому очень важно, чтобы все эти люди говорили на одном языке и хотя бы примерно представляли, как все это работает.
В этом смысле книга полезна как начинающим, так и уже сложившимся специалистам. Она будет интересна тем, кто задумывается о смене карьеры, и тем, кого своя карьера устраивает/кому просто любопытно.
Мир меняется, и сейчас навык анализа данных требуется и юристам, и маркетологам, и множеству других профессий. Во многих организациях сейчас идут кампании по продвижению data-driven культуры, но тут часто дело ограничивается только технической стороной – базовым обучением программированию, SQL и, может быть, вебинарами «Learning для чайников».
Но этого недостаточно. Золотой принцип аналитики – это «Garbage in – garbage out»[154], что означает: никакие технические навыки не заменят умения понимать, откуда данные взялись, насколько им можно доверять и каковы границы их применимости.
Высокоуровневое представление о Big Data важно и для бизнеса. Сотрудники компаний, собирающиеся монетизировать свои потоки данных, могут с ее помощью оценить, насколько их подход к вопросу системный. Те, кто еще этого не делает – оценить, что им (возможно) предстоит сделать в будущем.
«Взгляд с высоты птичьего полета» нужен и обычным людям, никак, казалось бы, не связанным профессионально с миром Big Data. По аналогии с компьютерной грамотностью людям сейчас нужна и data-грамотность. Любой человек сейчас должен понимать, какие «следы из данных» он оставляет, и что с этими данными будет дальше.
Данные, которые мы сейчас довольно бездумно и беззаботно оставляем в публичном доступе, могут остаться там на всю нашу жизнь – и влиять на нее. Яркий пример – расторжение контракта с Джеймсом Ганном из-за твитов, сделанных в 2011 году.
Аналогичная история с данными, которые мы отдаем разным коммерческим и некоммерческим организациям. Многие ли из нас хотя бы просматривают соглашение об использовании данных при регистрации в новом сервисе? Понятно, что почти никто.
Как эти данные будут применяться, сколько лет они будут храниться, могут ли их кому-то перепродать? Будете ли вы рады, если информация о ваших покупках войдет в данные для скоринговой модели микрофинансовой организации?
Не хотелось бы заканчивать книгу на мрачной ноте. Работа с данными – это увлекательное занятие, результаты которого действительно меняют мир.
Ознакомительная версия. Доступно 9 страниц из 42