Топ за месяц!🔥
Книжки » Книги » Домашняя » Идиот или гений? Как работает и на что способен искусственный интеллект - Мелани Митчелл 📕 - Книга онлайн бесплатно

Книга Идиот или гений? Как работает и на что способен искусственный интеллект - Мелани Митчелл

25
0
На нашем литературном портале можно бесплатно читать книгу Идиот или гений? Как работает и на что способен искусственный интеллект - Мелани Митчелл полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 39 40 41 ... 86
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 18 страниц из 86

Некоторые исследователи этики ИИ предположили, что нам не стоит пытаться непосредственно запрограммировать машины на следование правилам морали, а лучше позволить машинам самостоятельно усваивать моральные ценности, наблюдая за поведением людей[176]. Однако самостоятельное обучение наследует все проблемы машинного обучения, которые я описала в предыдущей главе.

На мой взгляд, прогресс в наделении компьютеров моральным интеллектом нельзя отделить от прогресса в наделении их другими типами интеллекта, ведь истинная сложность заключается в создании машин, действительно понимающих ситуации, с которыми они сталкиваются. Как показывают рассказы Айзека Азимова, робот не может надежно следовать приказу не причинять вред человеку, если он не понимает, что есть вред в различных обстоятельствах. Чтобы рассуждать о морали, необходимо понимать причинно-следственные связи, просчитывать возможные варианты будущего, иметь представление об убеждениях и целях окружающих и прогнозировать вероятные результаты действий в любой возможной ситуации. Иными словами, чтобы выносить надежные моральные суждения, необходимо пользоваться общим здравым смыслом, которого, как мы видели, не хватает даже лучшим современным системам ИИ.

Пока в этой книге мы увидели, как глубокие нейронные сети, обученные на огромных наборах данных, могут соперничать с людьми в выполнении конкретных зрительных задач. Мы также увидели некоторые слабости этих сетей, включая их зависимость от колоссальных объемов размеченных людьми данных и склонность ошибаться совсем не так, как человек. Как нам создать систему ИИ, которая действительно учится самостоятельно – и которая станет надежнее, потому что, как и люди, сможет судить о текущей ситуации и планировать будущее? В следующей части книги я опишу, как исследователи ИИ используют шахматы, го и даже видеоигры Atari в качестве “микрокосма” для создания машин, способных учиться и рассуждать на человеческий манер, и объясню, как разрабатываемые ими игровые машины, наделенные сверхчеловеческими способностями, могут переносить свои навыки в реальный мир.

Часть III
Обучение игре
Глава 8
Награды для роботов

Собирая материал для своей книги о дрессировщиках экзотических животных, журналистка Эми Сазерленд узнала, что основной метод их работы до нелепого прост: “поощрять хорошее поведение и игнорировать плохое”. В колонке “Современная любовь” в The New York Times она написала: “В конце концов я поняла, что такая техника может сработать также с упрямым, но милым видом, мужем американским”. Сазерленд рассказала, как после многих лет тщетных придирок, сарказма и обид использовала этот простой метод, чтобы тайком научить ни о чем не подозревающего мужа не разбрасывать носки, самостоятельно находить ключи от машины, вовремя приезжать в ресторан и регулярно бриться[177].

Эта классическая техника дрессировки, в психологии называемая оперантным обусловливанием, столетиями применяется к животным и людям. Оперантное обусловливание вдохновило важный метод машинного обучения, называемый обучением с подкреплением. Обучение с подкреплением отличается от обучения с учителем, которое я описала в предыдущей главе: в чистой форме обучение с подкреплением не требует размеченных обучающих примеров. Вместо этого агент – обучающаяся программа – совершает действия в среде (обычно в компьютерной симуляции) и время от времени получает сигналы подкрепления, или награды. Эти промежуточные сигналы подкрепления – единственная обратная связь, которую агент использует для обучения. Для мужа Эми Сазерленд сигналами подкрепления были ее улыбки, поцелуи и похвала. Хотя компьютерная программа, возможно, не станет реагировать на поцелуи или искреннее “ты лучше всех”, ее можно научить реагировать на машинный эквивалент такой признательности – например, на положительные числа, добавляемые в ее память.

Несмотря на то что обучение с подкреплением много десятков лет входило в инструментарий ИИ, долгое время оно оставалось в тени нейронных сетей и других методов обучения с учителем. Все изменилось в 2016 году, когда обучение с подкреплением сыграло ключевую роль в поразительном и судьбоносном прорыве ИИ – программе, которая научилась побеждать мастеров сложной игры го. Чтобы объяснить эту программу, а также рассказать о других недавних достижениях обучения с подкреплением, я сначала приведу простой пример, показывающий, как оно работает.

Дрессировка собаки-робота

Для примера рассмотрим веселую игру в футбол для роботов, в рамках которой люди (обычно студенты) программируют роботов для игры в упрощенную версию футбола на “поле” размером с комнату. Иногда игроками становятся милые собаки-роботы Aibo, как на рис. 22. Робот Aibo (производимый Sony) оборудован камерой, чтобы получать зрительные входные сигналы, встроенным программируемым компьютером и целым набором датчиков и моторов, позволяющих роботу ходить, пинаться, бодаться и даже вилять своим пластиковым хвостом.

Допустим, мы хотим научить собаку-робота простейшему футбольному навыку: увидев мяч, подходить и пинать его. Если следовать традиционному методу ИИ, необходимо запрограммировать в робота следующие правила: сделай шаг к мячу; повторяй, пока одна из твоих лап не коснется мяча; пни мяч этой лапой. Само собой, краткие описания вроде “сделай шаг к мячу”, “пока одна из твоих лап не коснется мяча” и “пни мяч” необходимо аккуратно перевести в серию детализированных сенсорных и моторных операций, доступных Aibo.


Рис. 22. Собака-робот Sony Aibo играет с роботизированным мячом


Таких четко прописанных правил может оказаться достаточно для выполнения столь простой задачи. Однако чем более “разумным” вы хотите сделать своего робота, тем сложнее вручную прописать правила его поведения. И, конечно, невозможно разработать набор правил, подходящих для любой ситуации. Что, если между роботом и мячом окажется большая лужа? А если тренировочный конус перекроет роботу обзор? А если камень не позволит сдвинуть мяч с места? Как всегда, реальный мир полон пограничных случаев, прогнозировать которые очень сложно. Обучение с подкреплением дает надежду, что агент – в данном случае собака-робот – самостоятельно овладеет гибкими стратегиями поведения, просто выполняя определенные действия и время от времени получая сигналы подкрепления, а людям не придется вручную прописывать правила или непосредственно учить агента, как действовать в любых возможных обстоятельствах.

Ознакомительная версия. Доступно 18 страниц из 86

1 ... 39 40 41 ... 86
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Идиот или гений? Как работает и на что способен искусственный интеллект - Мелани Митчелл», после закрытия браузера.

Комментарии и отзывы (0) к книге "Идиот или гений? Как работает и на что способен искусственный интеллект - Мелани Митчелл"