Топ за месяц!🔥
Книжки » Книги » Домашняя » Мир многих миров. Физики в поисках иных вселенных - Алекс Виленкин 📕 - Книга онлайн бесплатно

Книга Мир многих миров. Физики в поисках иных вселенных - Алекс Виленкин

140
0
На нашем литературном портале можно бесплатно читать книгу Мир многих миров. Физики в поисках иных вселенных - Алекс Виленкин полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 ... 59
Перейти на страницу:

Рис. 2.2. Уравнения Эйнштейна.

Возможно, самая замечательная черта общей теории относительности — то, как мало она требует экспериментальных предпосылок. Ключевой факт, который Эйнштейн положил в основу своей теории, — то, что движение тел под действием гравитации не зависит от их массы, — был известен уже Галилею. На этой скромной основе он построил теорию, которая в соответствующем предельном случае воспроизводила закон всемирного тяготения Ньютона и объясняла отклонение от этого закона. Если задуматься, закон Ньютона в известном смысле произволен. Он постулирует, что сила притяжения двух тел обратно пропорциональна второй степени расстояния между ними, но не говорит почему. С равным успехом там могла быть степень 4 или 2,03. В противоположность этому общая теория относительности не оставляет свободы выбора. Представление гравитации как кривизны пространства-времени с неизбежностью ведет к уравнениям Эйнштейна, а из них вытекает закон обратных квадратов. В этом смысле теория относительности не описывает, а объясняет гравитацию. Логика теории была столь убедительна, а ее математическая структура столь красива, что Эйнштейн чувствовал: она просто обязана быть верной. Обращаясь к своему старшему коллеге Арнольду Зоммерфельду, он писал: "Вы будете убеждены в правильности общей теории относительности, как только изучите ее. Так что я не собираюсь защищать ее ни единым словом".[5]

Тяготение пустого пространства

Когда общая теория гравитации была готова, Эйнштейн немедля применил ее ко всей Вселенной. Его не интересовали тривиальные подробности вроде положения конкретных звезд или планет. Вместо этого он стремился найти решение своих уравнений, которое в общих чертах описало бы строение всей Вселенной как единого целого.

В то время о распределении вещества во Вселенной мало что было известно, поэтому Эйнштейну пришлось делать определенные допущения. Он выдвинул простейшее предположение о том, что материя распределена в космосе в среднем однородно. При этом, конечно, существуют локальные отклонения от однородности, где концентрация звезд немного выше или ниже средней. Но в достаточно больших масштабах, согласно предположению Эйнштейна, Вселенная с хорошей точностью может считаться совершенно однородной. Это подразумевает, что наше положение в космосе ни в малейшей степени не является выделенным: все места во Вселенной более или менее одинаковы. Эйнштейн также предположил, что Вселенная в среднем изотропна, то есть из любой точки она выглядит примерно одинаково во всех направлениях.

И наконец, Эйнштейн предположил, что в среднем свойства Вселенной не меняются во времени. Иными словами, Вселенная статична. Хотя у Эйнштейна было мало наблюдательных подтверждений этого тезиса, картина вечной неизменной Вселенной выглядела очень привлекательно.

Охарактеризовав искомую модель Вселенной, Эйнштейн мог теперь попытаться найти решение своих уравнений, которое описывало бы мир с желаемыми характеристиками. Однако ему не потребовалось много времени для того, чтобы выяснить: теория не допускает подобных решений. Причина была очень проста: массы, распределенные по Вселенной, отказывались оставаться в покое, а вместо этого "хотели" упасть одна на другую под действием своего гравитационного притяжения.

Это обстоятельство сильно озадачивало и сбивало с толку Эйнштейна. После года упорной работы он решил, что уравнения общей теории относительности следует модифицировать так, чтобы они допускали существование статического мира.

Эйнштейн знал, что, не нарушая физических принципов теории, в его уравнения можно включить дополнительный член. Эффект этого нового члена состоит в наделении пустого пространства, то есть вакуума, ненулевой энергией натяжения. Каждый кубический сантиметр пустого пространства получает фиксированное количество энергии (а значит, и массу). Эйнштейн назвал эту постоянную плотность энергии вакуума космологической постоянной.[6]

Математическая структура уравнений Эйнштейна диктует, что натяжение вакуума в точности равно его плотности энергии и потому определяется той же постоянной. Натяжение вакуума аналогично растяжению резиновой ленты, которая сжимается, если ее отпустить. Натяжение противоположно давлению, которое заставляет предметы расширяться подобно тому, как шарик раздувается под давлением сжатого воздуха. То есть натяжение действует как отрицательное давление.

Если вакуум обладает энергией и натяжением, то как получается, что они не оказывают никакого влияния на нас? Почему мы не видим, что пустое пространство сжимается из-за собственного натяжения? Все дело в том, что не так-то просто заметить постоянную энергию или натяжение. Если увеличить давление в воздушном шарике, он раздуется. Но если на такую же величину увеличить давление воздуха вокруг него, то никакого эффекта не будет. Энергия вакуума неуловима, поскольку ее невозможно извлечь. Нельзя сжечь вакуум, нельзя использовать его для работы автомобиля или фена: его энергия задана космологической постоянной и не может уменьшаться. Выходит, что энергия и натяжение вакуума необнаружимы — за исключением их гравитационного воздействия.

Как оказалось, гравитация вакуума скрывала большой сюрприз. Согласно общей теории относительности, давление и натяжение дают вклад в силу тяготения массивных тел. Если вы сжимаете предмет, его тяготение усиливается, если растягиваете — ослабевает. Обычно этот эффект очень мал, но если удастся растягивать предмет, не разрушая его, то в принципе можно ослабить его тяготение вплоть до полной нейтрализации или даже отталкивания. Именно это имеет место в случае вакуума. Отталкивающая гравитация натяжения вакуума значительно превосходит гравитационное притяжение его же массы, что в целом приводит к отталкиванию.

Это в точности то самое, что требовалось Эйнштейну для разрешения его проблемы. Он мог подобрать значение космологической постоянной так, чтобы притягивающая гравитация материи находилась в равновесии с отталкивающей гравитацией вакуума, давая в итоге статическую вселенную. Из своих уравнений он вывел, что баланс достигается, когда космологическая постоянная равна половине плотности энергии вещества.

Поразительным следствием модифицированных уравнений было то, что пространство статической вселенной должно быть искривленным и замыкаться само на себя подобно поверхности сферы. Космический корабль, движущийся прямо вперед в такой замкнутой вселенной, в конце концов вернулся бы в исходную точку. Это замкнутое пространство называется трехмерной сферой. Ее объем конечен, хотя у нее нет границы.

1 ... 3 4 5 ... 59
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Мир многих миров. Физики в поисках иных вселенных - Алекс Виленкин», после закрытия браузера.

Комментарии и отзывы (0) к книге "Мир многих миров. Физики в поисках иных вселенных - Алекс Виленкин"