И даже со всеми предосторожностями в тех первых экспериментах нашлись следы загрязнений. После ПЦР всю полученную из кости партию ДНК – а это были предположительно однотипные фрагменты из 61 нуклеотида – Матиас клонировал в бактериальных носителях. Это делалось для того, чтобы проверить, действительно ли получился только один тип фрагментов или там их несколько. В бактерию с помощью специального носителя – плазмиды – встраивался один 61– нуклеотидный фрагмент, в другую бактерию следущий, в третью бактерию следующий далее и т. д. Затем бактерии размножались, и вместе с ними клонировались и встроенные фрагменты ДНК. Таким образом, отсеквенировав ДНК бактерий из выросших колоний, можно было увидеть, какие типы ДНК присутствовали в полученной от ПЦР партии фрагментов. В самых первых Матиасовых эспериментах мы получили 17 колоний с идентичными фрагментами, которые при этом отличались от всех двух тысяч с хвостиком доселе известных современных. И вдобавок к ним еще один фрагмент, которому нашлось соответствие среди этих двух тысяч. Так что загрязнение все-таки было, возможно, от музейных работников, а возможно, от других людей, через чьи руки прошел образец за 140 лет изучения.
Поэтому первым делом Матиас повторил ПЦР и клонирование. На этот раз он выявил 10 клонов с одним и тем же фрагментом, тем самым, выстраданным нами, и еще два других, которые, похоже, произошли от современных людей. Потом Матиас взял другой костный кусочек, сделал из него новую вытяжку, снова провел ПЦР и снова клонировал всю партию в бактериях. И получилось 10 колоний с нашим уникальным фрагментом мтДНК и 4 лишних, современных. И вот тут мы с удовлетворением решили: всё, наш результат прошел первую проверку, мы можем повторять все операции и получать каждый раз ту самую необычную последовательность ДНК.
Матиас приступил к “проходке” вдоль ДНК. Для этого он использовал другие праймеры. Такие, которые строили отрезки ДНК, частично перекрывающиеся с нашим первым, но и удлиняющие его по нити мтДНК (см. рис. 1.2). И снова мы увидели, что в некоторых из этих фрагментов отклонения в ДНК ни на какие современные не похожи. За несколько следующих месяцев Матиас получил 13 кусочков ДНК разной длины, повторив все опыты по меньшей мере дважды. По ходу дела мы встретились с естественными трудностями интерпретации – а что делать, если любая молекула ДНК подвержена мутациям. И причины мутаций могли быть самыми разнообразными: и древние химические модификации, и ошибки секвенирования, и редкие, но все же встречающиеся вариации мтДНК в клетках одного индивидуума. Тут помогла тактика, которую я придумал, еще работая с древней ДНК животных (см. снова рис. 1.2). Для каждой позиции мы принимали за норму такой нуклеотид (А, Т, Г или Ц), который встречается в этой позиции чаще всего во всех размноженных (амплифицированных) и прочтенных последовательностях. Также мы ввели требование, чтобы нуклеотид, стоящий в определенной позиции, был найден по крайней мере в двух независимых повторах. Это было нужно, потому что в некоторых случаях, крайне редких, ПЦР может стартовать только с одной нити. И тогда, в результате подобной ошибки в ПЦР или нарушения в самой ДНК, будут амплифицироваться только клоны этой одной нити, но не комплементарной ей, и в итоге все нуклеотиды конкретной позиции будут совершенно одинаковы. Если в двух экспериментах ПЦР давали разные результаты, то мы повторяли эксперимент третий раз и смотрели, какой из вариантов с ним сойдется. Матиас получил в результате 123 последовательности и затем, прикладывая один кусочек к другому, сложил эту мозаику в участок длиной в 379 нуклеотидов. И это был тот самый изменчивый участок мтДНК. С учетом наших критериев правдоподобия нуклеотидных позиций это был тот самый кусочек ДНК, который некогда работал в живом неандертальце (или неандерталке). Собрав длинный отрезок “нашей” ДНК, мы подобрались к самой волнующей части – к сравнению его с аналогичными современными человеческими фрагментами.
И вот мы сравниваем наш 379– нуклеотидный участок неандертальской мтДНК с аналогичными участками у 2051 современного человека со всего света. И находим, что неандертальская ДНК отличается от каждой из современных в среднем в 28 позициях. А ДНК современных людей отличаются друг от друга в среднем семью нуклеотидами (речь идет, естественно, об одном конкретном участке мтДНК). Получается, что неандертальские различия вчетверо больше современной вариабельности.
Затем мы посмотрели – вдруг имеются какие-то указания на большее сродство неандертальской ДНК к современной европейской? Такое вполне могло бы быть, потому что эволюция неандертальцев была сосредоточена на территории Европы и Западной Азии. И некоторые палеонтологи убеждены, что европейцы своим происхождением обязаны именно неандертальцам. Чтобы понять, так ли это, мы сравнили неандертальскую последовательность отдельно с европейскими вариантами (у нас было 510 европейских последовательностей), азиатскими (478) и африканскими (494). Среднее число различий со всеми тремя группами оказалось одинаковым – по 28 нуклеотидов. Это означало, что европейская мтДНК отличается от неандертальской ровно настолько же, насколько африканская и азиатская. Тогда мы подумали: возможно, среди европейской выборки найдутся отдельные индивиды, у которых мтДНК больше других похожа на неандертальскую; подобные отклонения могли бы проявиться, передай неандертальцы европейцам свои митохондриальные гены. Проверили и эту гипотезу: самые похожие последовательности имели “всего” 23 отличия против средних 28. В африканской и азиатской выборках такие же отклонения в сторону неандертальцев составили 22 и 23 нуклеотида соответственно. В итоге мы, во-первых, выяснили, что неандертальская мтДНК резко отличается от современной во всех частях света, во-вторых, не обнаружили никаких свидетельств какой-то особой связи между европейцами и неандертальцами.
Рис. 1.2. Реконструкция участка мтДНК, извлеченного из кости неандертальца, ти пового образца из долины Неандерталь. Верхняя строчка – соответствующая эталонная последовательность современного человека. Каждая нижеследующая строчка – это один амплифицированный фрагмент из неандертальского образца. В тех позициях, где современные и древние нуклеотиды не отличаются, я поставил точки; там, где различия нашлись, я их указал. Самая нижняя строчка – это то, что получилось после наложения фрагментов друг на друга. Наши требования к определению “особых” нуклеотидов соблюдались строго: нуклеотид должен был найтись в конкретной позиции в двух независимых экспериментах и отличаться от эталонной последовательности в большинстве полученных фрагментов. Из: Matthias Krings et al. Neandertal DNA sequences and the origin of modern humans. Cell 90, 19–30 (1997).
Понятно, что, занимаясь простым подсчетом различий, мало что поймешь об истории той или иной области ДНК. Найденные различия представляют собой мутации, имевшие место в эволюционном прошлом. Но, как мы знаем, некоторые типы мутаций случаются чаще других, и в одних позициях нуклеотиды больше склонны к мутированию, чем в других. В таких позициях могут происходить не одна и не две мутации, особенно если речь идет о частых видах мутаций. Поэтому, чтобы представить ход трансформации конкретного участка ДНК, нужно составить модели мутирования для каждой позиции; в особенности тех, что мутировали, как мы предполагаем, не единожды, затирая предыдущие нуклеотидные варианты. В результате такого моделирования вырисовывается дерево, его конечные веточки представляют собой последовательности ДНК, которые сходятся к определенной предковой последовательности. Предковые последовательности – это точки схождения отдельных веточек (рис. 1.3). Проделав эту процедуру с ДНК современных людей, мы увидели, что все они собираются к одной точке, к одному общему предку.