Ознакомительная версия. Доступно 20 страниц из 100
Мы познакомим вас с совершенно новым подходом к здоровью. Мы рассмотрим здоровье на клеточном уровне, чтобы показать вам, что представляет собой преждевременное клеточное старение и какой удар оно способно нанести организму. А заодно научим вас, как избежать этого процесса – и даже обратить его вспять. Мы копнем глубоко и доберемся до самого сердца клетки – ее хромосом. Здесь-то мы и найдем теломеры – повторяющиеся фрагменты некодирующей ДНК, которые располагаются на концах хромосом. Теломеры, которые укорачиваются с каждым делением клетки, помогают определить, с какой скоростью стареют наши клетки и когда они умрут, в зависимости от того, насколько быстро те изнашиваются. Выдающимся научным открытием стал тот удивительный факт, что концевые участки хромосом могут и удлиняться. Таким образом, старение – динамический процесс, который можно замедлить или ускорить, а в определенном смысле и пустить вспять. Старение вовсе не обязано быть однонаправленной скользкой дорожкой к болезням и постепенному угасанию, каким оно раньше рисовалось в нашем сознании. Все мы состаримся, но то, как именно это произойдет, во многом зависит от здоровья наших клеток.
Рис. 2. Теломеры на концах хромосом. У каждой хромосомы есть концевые участки, которые состоят из нитей ДНК, покрытых специальным защитным слоем белков. Обратите внимание: на изображении хромосом имеются светлые участки – это и есть теломеры. На иллюстрации теломеры изображены в неправильном масштабе: в действительности на их долю приходится не более одной десятитысячной длины ДНК наших клеток. Это крошечные, но жизненно важные части хромосомы.
Мы – это молекулярный биолог Элизабет и специалист по психологии здоровья Элисса. Элизабет посвятила свою карьеру изучению теломер; благодаря ее фундаментальным исследованиям зародилась новая область научных знаний. Элисса же всю жизнь занималась психологическим стрессом. Она изучала его губительное воздействие на поведение, психику и физическое здоровье человека, а также искала способы, позволяющие обратить вспять негативные последствия стресса. Пятнадцать лет назад мы объединили силы, и проведенные нами исследования заставили научное сообщество по-новому взглянуть на взаимосвязь между телом и разумом. Нашему – и всеобщему тоже – удивлению не было предела, когда обнаружилось, что теломеры не просто несут в себе команды, заложенные в генетическом коде. Как оказалось, наши теломеры прислушиваются к нам. Они подчиняются указаниям, которые мы им даем. Наш образ жизни может заставить теломеры ускорить процесс старения клеток или, наоборот, притормозить его. Рацион питания, эмоциональная реакция на проблемы, наличие стресса в детские годы, степень доверия между нами и окружающими – все эти и многие другие факторы влияют на теломеры и способны предотвратить преждевременное старение на клеточном уровне. Проще говоря, один из секретов долгой и здоровой жизни заключается в том, чтобы активно стимулировать обновление клеток.
Обновление здоровых клеток: для чего оно нужно?
В 1961 году биолог Леонард Хейфлик обнаружил, что большинство клеток в человеческом организме способны делиться лишь ограниченное число раз: по достижении этого предела они умирают. Клетки размножаются делением, благодаря чему создаются точные копии материнской клетки (митоз). Хейфлик наблюдал за этим процессом в лаборатории, которую сплошь заставил специальными стеклянными чашками с клеточными культурами. Поначалу клетки копировали себя довольно быстро – по мере их деления исследователю требовались все новые и новые чашки. Более того, на ранней стадии клетки делились столь стремительно, что невозможно было сохранить все культуры: для этого, как вспоминает Хейфлик, ему с коллегой пришлось бы «уступить стекляшкам с клетками лабораторию и все здание исследовательского центра». Ученый назвал ранний этап клеточного деления фазой буйного роста. Однако через какое-то время клетки переставали делиться, словно это их утомляло. Самым долгоживущим удавалось совершить порядка 50 делений. В конечном итоге уставшие клетки достигали состояния, которое Хейфлик назвал фазой увядания: они по-прежнему оставались живыми, но раз и навсегда утрачивали способность делиться. Максимально возможное количество делений человеческих клеток, обусловленное природой, получило название «предел Хейфлика», причем в роли выключателя, останавливающего этот процесс, выступают теломеры, которые к концу жизненного цикла клетки достигают критически малой длины.
Неужели все клетки ограничены пределом Хейфлика? Нет. В нашем организме присутствуют клетки, которые постоянно обновляются. Среди них клетки иммунной системы, костей, кишечника, печени, поджелудочной железы, кожи и волосяных луковиц, а также клетки, выстилающие стенки сердца и сосудов. Чтобы поддерживать здоровье организма, им приходится делиться снова и снова. К числу обновляющихся относятся некоторые виды обычных клеток, способных к делению (например, клетки иммунной системы); клетки-предшественницы, способные делиться еще дольше; жизненно важные стволовые клетки, которые могут делиться бесконечно, пока остаются здоровыми. И в отличие от клеток из лаборатории клетки в организме человека не всегда подчиняются пределу Хейфлика, потому что – как вы узнаете из первой главы – в них содержится фермент теломераза. В стволовых клетках – если поддерживать их здоровыми – присутствует достаточно теломеразы, чтобы они продолжали делиться на протяжении всей человеческой жизни. Регулярное обновление клеток (тот самый буйный рост) служит одной из причин, по которым кожа Лизы выглядит молодой и красивой. Именно поэтому ее суставы двигаются без особых проблем и она может полной грудью вдыхать прохладный воздух, приносимый ветром с побережья. Благодаря появлению новых клеток важнейшие ткани и органы ее тела то и дело обновляются. Идет непрерывное обновление на клеточном уровне – и Лиза чувствует себя моложе своих лет.
Клетки, достигшие фазы увядания, больше не способны делиться. В каком-то смысле они слишком дряхлые для этого. С одной стороны, даже хорошо, что такие клетки прекращают делиться: если бы они продолжали размножаться, это могло бы способствовать возникновению рака. С другой стороны, дряхлые клетки отнюдь не безобидны – они истощены и растеряны. Они путаются и не посылают нужные сигналы другим клеткам организма – они больше не способны добросовестно справляться со своими былыми обязанностями. Они больны. Время буйного роста подошло к концу – во всяком случае для них, и это серьезнейшим образом отражается на вашем здоровье. Когда слишком много клеток достигает фазы увядания, ткани организма начинают стареть. Так, например, когда количество дряхлых клеток в стенках кровеносных сосудов достигает критической отметки, артерии теряют эластичность, в связи с чем повышается риск сердечного приступа. Когда борющиеся с инфекцией клетки иммунной системы из-за «старческого слабоумия» не могут распознать вирус у вас в крови, повышается риск заболеть простудой или гриппом. Старые клетки выделяют вещества, способствующие воспалению, из-за чего организм становится более уязвимым для хронических заболеваний. И наконец, существование многих старых клеток завершается благодаря запрограммированному механизму их гибели.
Ознакомительная версия. Доступно 20 страниц из 100