Ознакомительная версия. Доступно 28 страниц из 137
Если строгий контроль не позволяет вскрывать конверты заранее, приходится прибегать к помощи технологий: например, просвечивать конверты мощной лампой или обращаться за помощью к коллегам из радиологической лаборатории. Иногда конверты содержат не только код распределения, но и порядковый номер. В таких случаях незаметно изменить последовательность использования конвертов не получится. Однако если удалось выяснить последовательность, можно манипулировать очередностью приема пациентов, подгоняя ее под нужные группы. От этого не застрахуют ни порядковые номера, ни мешающая просвечиванию фольга. Самый отчаянный из зафиксированных способов узнать последовательность – ночное проникновение в кабинет ответственного сотрудника, чтобы порыться в его бумагах. Не самый высокоинтеллектуальный, но эффективный метод. К сожалению, все перечисленное выше – совсем не гипотетические способы манипулировать составом групп, а реально применявшиеся трюки.
Учитывая, как часто экспериментаторы применяют свои способности не для поиска научной истины, стоит подумать о еще одном уровне защиты. Например, зашифровать код распределения. Использование простых одинаковых кодов недостаточно надежно. Если вы использовали “А” для экспериментальной группы, а “В” – для контрольной, то чтобы вскрыть все распределение, достаточно знать, в какую группу попал один пациент. Этому препятствуют сложные уникальные коды. Лист, соотносящий каждый из кодов с конкретной группой, должен храниться в труднодоступном месте.
Лучшее из существующих сейчас решений – сервисы дистанционной рандомизации. Исследователь получает код для очередного пациента, связываясь с независимым сервисом по телефону или через интернет. Списки, соотносящие коды и группы, хранятся в рандомизационном центре и доступны только по окончании исследования либо в ситуациях, когда необходимо срочно выяснить, в какую группу попал пациент, – такая необходимость может возникнуть в случае опасного состояния, которое может оказаться побочным эффектом лечения.
Теоретически использование удаленных рандомизационных центров полностью лишает экспериментаторов возможности манипулировать составом групп. И пока практика подтверждает теорию. В ходе большого клинического испытания хирургической процедуры, которое проводили несколько не связанных между собой клиник, группы, получавшие лечение, оказались в среднем заметно моложе, чем плацебо-группы. Но разница наблюдалась только в тех клиниках, где использовали запечатанные конверты. У тех команд, которые применяли удаленную рандомизацию, возраст в группах не отличался. Впрочем, при большом желании подкуп рандомизационного центра решает и эту проблему.
☛ При соблюдении должных мер предосторожности рандомизация предотвращает предвзятость отбора. Однако всегда ли рандомизация справляется со второй задачей – созданием групп, схожих во всем, кроме лечения? Увы, даже после корректно проведенной рандомизации группы могут отличаться по важным показателям. Чем меньше пациентов мы рандомизируем, тем выше вероятность несхожести групп. В небольших исследованиях со 150–200 участниками это случается довольно часто. Чтобы избежать влияния этих различий на результат, после рандомизации группы сравнивают и при необходимости делают в ходе статистического анализа поправки. Отчет о клиническом исследовании обязательно должен включать информацию о том, насколько сравнимыми по важным параметрам получились группы в результате рандомизации.
Другой метод решения проблемы – стратифицированная рандомизация. Ее суть в том, что сначала участников клинического испытания делят на страты – подгруппы, отличающиеся по важному признаку, например тяжести течения болезни. А затем внутри каждой страты проводят обычную процедуру рандомизации. В результате в экспериментальной и контрольной группах гарантированно оказывается одинаковое количество больных с определенной тяжестью заболевания.
Итак, рандомизация помогает создать сравнимые группы и препятствует осознанной манипуляции их составом. Но у нее есть и третья, не менее важная роль: она обеспечивает справедливость клинического испытания. Благодаря рандомизации каждый из участников имеет равный шанс получить возможные преимущества лечения или избежать возможных побочных эффектов. Поскольку клинические испытания проводятя на людях, вопросы этики имеют первоочередную важность. И не всегда на них можно получить простой и очевидный ответ.
Часть третья
Герои и мерзавцы
Один из самых непростых вопросов медицинского эксперимента: на ком его проводить? С одной стороны, проблема в том, что результаты должны быть применимы для лечения пациентов, а значит, субъекты эксперимента – максимально на них похожи. С другой – исход эксперимента непредсказуем: он может привести как к улучшению здоровья, так и к ухудшению и даже к смерти. Особенно велики риски, если мы изучаем новый метод лечения.
Как же поступить, когда без экспериментальной проверки оценить эффективность и безопасность терапии невозможно и в то же время нельзя подвергать и без того больных людей новой опасности? В поисках ответа совершались как благородные подвиги, так и отвратительные злодеяния. И этот поиск продолжается по сей день. Любой ответ будет компромиссом между вредом, который может причинить участие в эксперименте и, возможно, еще большим вредом, который повлечет за собой отказ от медицинских исследований.
Глава 8
Лучшие друзья человека
Идея использовать в экспериментах животных всегда лежала на поверхности. Ведь, с одной стороны, при всех отличиях сходство между ними и нами очевидно. С другой – что бы ни случилось в ходе эксперимента, последствия для экспериментатора будут не такими серьезными, как в случае ущерба человеку. Животных мы всегда считали просто своей собственностью. Большинство культур ставит человека на вершину иерархии живого мира, наделяя только его бессмертной душой, способностью мыслить, чувствовать и страдать. Животные же были созданы, чтобы подчиняться нам и удовлетворять наши потребности.
Во времена античности, когда вскрытие человеческих тел не практиковалось, исследование анатомии животных дало первые знания о внутреннем строении живых существ. Оно же привело и к первым ошибкам, вызванным попытками использовать анатомию животных для описания человека. Еще больше информации давала вивисекция. Благодаря этой жестокой практике были получены первые знания о физиологии, которые невозможно было получить другим способом. Так, определить функции блуждающего нерва за сотни лет до открытия электричества можно было, только перерезав его у живого существа. Но даже на Галена, если верить его записям, выражение страдания на лице вскрываемой заживо обезьяны произвело впечатление столь тяжкое, что он прекратил вивисекции приматов и переключился на свиней.
После долгого перерыва использование животных стало вновь популярным в эпоху научной революции. Уильям Гарвей настолько убедительно и эффектно показал, какие возможности оно открывает, что за публикацией его работ по кровообращению последовала целая серия вдохновленных ими экспериментов.
Гарвей не только правильно описал систему кровообращения, но и предположил, что попадающие в желудок вещества всасываются и поступают в кровь, которая затем разносит их по всему телу, исполняя роль универсальной транспортной системы организма. В 1656 году эту теорию решил проверить член Королевского общества и один из основателей современной химии Роберт Бойл. Для эксперимента Бойл раздобыл крупного пса. Судя по оставленным записям, Бойл не тратил денег на покупку животных и считал вполне нормальным присваивать увязавшихся за ним на улице или зашедших в дом чужих собак. Собрав “несколько известных врачей и других ученых людей” и поручив им держать пса, Бойл ввел ему в вену спиртовой раствор опиума. Результат не заставил себя ждать: едва встав на ноги, пес принялся трясти головой, шататься и крутиться на месте, пытаясь сохранить равновесие. Введение в кровь явно было самым эффективным способом заставить вещество действовать. Пес выжил, остался у Бойла, стал знаменит и растолстел. Правда, впоследствии был похищен – возможно, другим экспериментатором.
Ознакомительная версия. Доступно 28 страниц из 137