Но есть и еще один аспект теоремы Байеса, который даже важнее для понимания того, как работает наш мозг. В формуле Байеса два ключевых элемента: p(A|X) и p(X|A). Величина p(A|X) говорит нам, насколько мы должны изменить наше представление об окружающем мире (A) после получения новых сведений (X). Величина p(X|A) говорит нам, каких сведений (X) мы должны ожидать, исходя из нашего убеждения (A). Мы можем взглянуть на эти элементы как на средства, позволяющие нашему мозгу делать предсказания и отслеживать ошибки в них. Руководствуясь своими представлениями об окружающем мире, наш мозг может предсказывать характер событий, которые будут отслеживать наши глаза, уши и другие органы чувств: p(X|A). Что же происходит, когда такое предсказание оказывается ошибочным? Отслеживать ошибки в подобных предсказаниях особенно важно, потому что наш мозг может использовать их для уточнения и улучшения своих представлений об окружающем мире: p(A|X). После внесения такого уточнения мозг получает новое представление о мире и может снова повторить ту же процедуру, сделав новое предсказание о характере событий, отслеживаемых органами чувств. С каждым повтором этого цикла ошибка в предсказаниях уменьшается. Когда ошибка оказывается достаточно маленькой, наш мозг "знает", что творится вокруг нас. И все это происходит так быстро, что мы даже не осознаём выполнения всей этой сложной процедуры. Нам может казаться, что представления о том, что творится вокруг, даются нам легко, но они требуют неустанного повторения мозгом этих циклов предсказаний и уточнений.
Есть ли в комнате носорог?
Говорить об этих представлениях нашего мозга об окружающем мире можно по-разному. Например, можно говорить о причинах и следствиях. Если я считаю, что в этой комнате сейчас находится носорог, то, возможно, этот носорог и вызывает соответствующие ощущения, получаемые моим мозгом от глаз и ушей. Мозг осуществил поиск возможных причин моих ощущений и пришел к выводу, что наиболее вероятная причина это присутствие в комнате носорога. Можно также говорить о моделях. Мой мозг может предсказать, какие ощущения вызовет носорог, потому что обладает некоторыми априорными представлениями о носорогах. На основе этих априорных знаний у меня в сознании сложился образ носорога. В моем случае это крайне ограниченная модель. Она включает размер животного, его силу, его необычный рог и мало что другое. Но ограниченность моих знаний не имеет значения, потому что модель – это не исчерпывающий список сведений о моделируемом объекте. Модель подобна карте, отображающей реальный мир в уменьшенном масштабе.[126]Многие аспекты окружающего мира нельзя найти на карте, но расстояния и направления отражены на картах довольно точно. Пользуясь картой, я могу предсказать, что через 50 ярдов найду поворот налево, и если это карта зоопарка, то, возможно, я даже смогу предсказать, что, скорее всего, увижу там еще одного носорога. Я могу воспользоваться картой, чтобы предсказать, сколько времени займет то или иное путешествие, даже не совершая его. Я могу провести курвиметром по определенному маршруту на карте, моделируя настоящее путешествие, и узнать, какой длины будет этот маршрут. Мой мозг содержит много подобных карт и моделей и пользуется ими, чтобы делать предсказания и моделировать действия. Я вижу, что профессор английского в недоумении. "Но ведь в этой комнате нет носорога", – говорит она.
"Вы что, его не видите? – отвечаю я. – Вам просто не хватает достаточно сильного априорного убеждения".
Рис. 5.6. Есть ли в комнате носорог?
Этот рисунок носорога работы Конрада Геснера, опубликованный в 1551 году, скопирован с другого рисунка, работы Альбрехта Дюрера. Сам Дюрер никогда не видел носорогов, а его рисунок был выполнен по чужому эскизу и описанию, прочитанному Дюрером в письме.
Наше восприятие зависит от априорных убеждений. Это не линейный процесс, вроде тех, в результате которых возникают изображения на фотографии или на экране телевизора. Для нашего мозга восприятие – это цикл. Если бы наше восприятие было линейным, энергия в виде света или звуковых волн достигала бы органов чувств, эти послания из окружающего мира переводились бы на язык нервных сигналов, и мозг интерпретировал бы их как объекты, занимающие определенное положение в пространстве. Именно этот подход и сделал моделирование восприятия на компьютерах первого поколения такой сложной задачей. Мозг, пользующийся предсказаниями, делает все почти наоборот. Наше восприятие на самом деле начинается изнутри – с априорного убеждения, которое представляет собой модель мира, где объекты занимают определенное положение в пространстве. Пользуясь этой моделью наш мозг может предсказать, какие сигналы должны поступать в наши глаза и уши. Эти предсказания сравниваются с реальными сигналами, и при этом, разумеется, обнаруживаются ошибки. Но наш мозг их только приветствует. Эти ошибки учат его восприятию. Наличие таких ошибок говорит ему, что его модель окружающего мира недостаточно хороша. Характер ошибок говорит ему, как сделать модель, которая будет лучше прежней. В итоге цикл повторяется вновь и вновь, до тех пор пока ошибки не станут пренебрежимо малы. Для этого обычно достаточно всего нескольких таких циклов, на которые мозгу может потребоваться лишь 100 миллисекунд.
Система, которая строит подобным образом модели окружающего мира, стремится использовать всю доступную информацию для совершенствования своих моделей. Ни зрению, ни слуху, ни осязанию не оказывается предпочтений, так как все они могут быть информативны. Кроме того, эта система стремится делать предсказания о том, как сигналы, поступающие от всех органов чувств, изменятся в результате нашего взаимодействия с окружающим миром. Поэтому, когда мы видим бокал вина, наш мозг уже делает предсказания о том, какие ощущения возникнут, когда мы возьмем его в руку, и какой вкус будет у этого вина. Представьте себе, как дико и неприятно было бы взять бокал сухого красного вина и обнаружить, что оно холодное и сладкое.