Пожалуй, самый привычный способ обеспечить приток энергии в атомы – их нагреть. Это заставляет электроны переходить на более высокие орбиты, а затем возвращаться, выделяя при этом фотоны (именно такой физический процесс лежит в основе работы натриевой газоразрядной лампы). Эти фотоны несут в себе энергию, количество которой эквивалентно разности энергий на разных орбитах, и обнаружение таких фотонов позволило бы нам приоткрыть окно в структуру материи. К счастью, мы сталкиваемся с ними постоянно, поскольку наши глаза – не более (или не менее) чем детекторы фотонов, воспринимающие их энергию как цвет. Лазурная голубизна океана вокруг тропического острова, желтые бриллианты звезд Ван Гога и ваша кровь цвета красной охры – все это прямой результат восприятия вашими глазами квантовой структуры вещества. Происхождение цветов, излучаемых газами при высоких температурах, было одной из движущих сил открытия квантовой теории на рубеже XX столетия. На протяжении долгих лет множество дотошных ученых внимательно наблюдали за всем, что испускает свет. В нашем языке их труд увековечен в названии газа, которым мы наполняем воздушные шары. Слово «гелий» происходит от древнегреческого «гелиос», что означает «солнце», поскольку спектральную линию этого элемента впервые обнаружил Пьер Жансен[34] во время солнечного затмения в 1868 году. Так ученые открыли гелий в составе нашей звезды еще до того, как нашли его на Земле. Сегодня астрономы ищут признаки жизни в дальних мирах, анализируя характерные следы кислорода в свете звезд, пронизывающем атмосферу планет в тот момент, когда они проходят по диску своих материнских звезд. Спектроскопия (так называется эта научная дисциплина) – мощный инструмент исследования Вселенной снаружи и изнутри.
Все существующие в природе атомы представлены в виде башни энергий (или масс), в зависимости от того, где находятся электроны. Поскольку во всех атомах, кроме атома водорода, содержится больше одного электрона, они излучают свет всех цветов радуги и даже более широкого спектра – именно поэтому нас окружает настолько красочный мир. В самом общем виде химия – это область науки, которая изучает процессы, происходящие в тот момент, когда две группы атомов приближаются друг к другу (но не слишком близко). В случае сближения двух атомов водорода протоны отталкиваются, потому что оба несут положительный электрический заряд. Однако такое отталкивание компенсируется тем, что электрон одного атома притягивает протон другого. В итоге создается оптимальная конфигурация, в которой два связанных между собой атома образуют молекулу водорода. Эти атомы связаны между собой в том же смысле, в котором электрон удерживается на своей орбите вокруг ядра атома водорода. Наличие связи между атомами означает, что требуются определенные усилия, чтобы отделить их друг от друга. В данном контексте под «приложить усилия» подразумевается необходимость обеспечить приток энергии. Если нам нужно добавить энергии, чтобы разбить молекулу на части, значит, масса молекулы меньше общей массы двух атомов водорода, из которого она состоит, точно так же как масса атома водорода меньше совокупной массы его составляющих. В обоих случаях энергия связи возникает под воздействием электромагнетизма, о котором шла речь в начале книги.
Как известно каждому, кто проводил время в школьной химической лаборатории с коробком спичек и невнимательным учителем, химическая реакция порой сопровождается выделением энергии. Горящий уголь в камине – прекрасный, хорошо поддающийся контролю пример: достаточно поднести зажженную спичку – и энергия непрерывно вырабатывается на протяжении многих часов. Более драматичный пример – когда взрывающаяся шашка динамита выделяет то же количество энергии, что и камин, но гораздо быстрее. Эта энергия генерируется не под воздействием спички, которой зажигают камин, или запала шашки динамита, а под воздействием энергии, в них содержащейся. Главное, что в случае потери какого-то количества энергии суммарная масса продуктов реакции всегда должна быть меньше исходной массы.
Последний пример может еще лучше проиллюстрировать идею высвобождения энергии в процессе химической реакции. Представьте себе, что вы сидите в помещении, наполненном молекулами водорода и кислорода. В такой среде мы могли бы дышать, и на первый взгляд это может показаться вполне безопасным и комфортным, поскольку, для того чтобы отделить друг от друга два атома в молекуле водорода, необходима энергия. Это позволяет предположить, что молекула водорода должна быть устойчивой субстанцией. Однако такая молекула может быть расщеплена посредством химической реакции, которая генерирует внушительное количество энергии. Причем настолько внушительное, что газообразный водород можно считать весьма опасным веществом. Этот газ легко воспламеняется в воздухе – достаточно буквально искры, чтобы вызвать настоящую катастрофу. Мы можем проанализировать этот процесс чуть подробнее, описывая его на нашем новом языке. Допустим, мы смешаем газ, состоящий из молекул водорода (два связанных между собой атома водорода), с газом, состоящим из молекул кислорода (два связанных между собой атома кислорода)[35]. А теперь, сидя в своей комнате, вы можете занервничать, узнав, что совокупная масса двух молекул водорода и одной молекулы кислорода больше совокупной массы двух молекул воды, каждая из которых состоит из двух атомов водорода и одного атома кислорода. Другими словами, четыре атома водорода и два атома кислорода, представленные в виде отдельных молекул, имеют большую массу, чем две молекулы Н2О. Избыточная масса составляет примерно 6 эВ/с². Таким образом, молекулы водорода и кислорода готовы к тому, чтобы перегруппироваться в две молекулы воды. Единственное отличие будет состоять в конфигурации атомов (и связанных с ними электронов). На первый взгляд в расчете на одну молекулу высвобождается крохотное количество энергии, но в заполненном газом помещении находится около 1026[36] молекул, а значит, речь идет о 10 миллионах джоулей энергии, чего вполне достаточно, чтобы в качестве побочного эффекта перегруппировать ваши собственные молекулы. К счастью, если мы будем осторожны, то нам не грозит превратиться в пепел: хотя масса конечных продуктов меньше массы исходных, понадобятся определенные усилия, чтобы составить из них и их электронов правильную конфигурацию. Это почти то же самое, что и подтолкнуть автобус к краю обрыва – необходимо приложить усилия, чтобы сдвинуть его с места, но затем уже ничто не сможет его остановить. Но все же было бы крайне неразумно зажигать спичку, которая выделит достаточно много энергии для запуска процесса перегруппировки молекул и образования воды.
Высвобождение химической энергии путем перегруппировки атомов или гравитационной энергии посредством перемещения тяжелых объектов (подобно огромному объему воды на гидроэлектростанциях) предоставляет в распоряжение нашей цивилизации инструменты для генерации и использования энергии. Кроме того, мы накапливаем все больше знаний и опыта в области применения богатых источников кинетической энергии, существующих в природе. Когда дует ветер, молекулы воздуха быстро перемещаются, и мы можем превратить эту необузданную кинетическую энергию в полезную, поставив на пути воздушного потока ветряную турбину. Молекулы воздуха ударяются о ее лопасти и замедляют движение, передавая свою кинетическую энергию турбине, которая начинает вращаться (кстати, это еще один пример действия закона сохранения импульса). Так кинетическая энергия ветра преобразуется в энергию вращательного движения турбины, которую, в свою очередь, можно использовать для подачи энергии на генератор. Энергия моря используется аналогичным образом, за исключением того, что в этом случае полезная энергия образуется из кинетической энергии молекул воды. С релятивистской точки зрения все виды энергии увеличивают массу. Представьте себе гигантскую коробку с летающими птицами. Вы можете поставить ее на весы и взвесить, получив общую массу птиц и коробки. Но поскольку птицы летают, они обладают кинетической энергией, а значит, коробка будет весить немного больше, чем весила бы, если бы все птицы спали.