В следующем, седьмом периоде периодической системы, естественно, появляются новые f-элементы – от актиния до лоуренсия, и у них форма f-орбиталей еще более необычная: между двумя крупными торами (бубликами) появляется уменьшенное кольцо (рис. 4.16).
Казалось бы, пространственная фантазия природы должна исчерпаться, но далее следуют еще более необычные конструкции.
То, что пока не получено
Вначале рассмотрим те закономерности в таблице Менделеева, которые остались незамеченными. Заполнение р-орбиталей начинается во втором периоде, d-орбитали начинают заполняться в четвертом периоде, а f-орбитали – в шестом. Получается, что заполнение новых орбиталей начинается в четном периоде (2–4–6), а нечетный, лежащий ниже период воспроизводит предыдущий. На сегодня последний период таблицы – седьмой, и он практически заполнен. Следующий период – восьмой, то есть четный, следовательно, в нем должны начать заполняться новые орбитали. Это действительно так, и для них уже есть название – g-орбитали.
Вторая неочевидная закономерность таблицы Менделеева: в каждом периоде только одна s-орбиталь, р-орбиталей – три, d-орбиталей – пять, f-орбиталей – семь, то есть это ряд нечетных чисел. Продолжив ряд 1–3–5–7, мы увидим, что g-орбиталей должно быть девять. Так оно и есть! Ни один элемент восьмого периода пока не получен, и они будут принципиально новыми. Никаких аналогов во всей предшествующей таблице Менделеева у них нет, как нет аналогов у f-элементов во всей лежащей над ними таблице. Их непросто получить, но еще труднее будет изучить их свойства, поскольку они окажутся, скорее всего, коротко живущими радиоактивными элементами. Не дожидаясь того момента, когда они будут получены, мы можем уже сейчас с помощью расчетов увидеть, как выглядят g-орбитали (рис. 4.17).
Кажется удивительным, что природа поместила электроны в столь причудливые области наиболее вероятного их местопребывания. Нелегко даже подобрать какие-либо реальные образы, с которыми можно сравнить эти орбитали – восемь необычных конгломератов, напоминающих грозди из горошин и кофейных зерен, и это все увенчано космическим летательным аппаратом, собранным из пяти разновеликих торов, пронизанных двумя каплеобразными телами. Все эти девять орбиталей непостижимым образом размещаются вокруг одного атомного ядра, не мешая друг другу, и также вокруг ядра располагаются все s-, p-, d– и f-орбитали. Наше бытовое воображение не в силах себе это представить. Здесь действуют иные правила – законы квантовой механики. Безусловно, наша фантазия не сможет соперничать с такой реальностью.
Первое подтверждение расчетов
Все показанные картинки, изображающие форму орбиталей, получены с помощью квантово-химических расчетов. В подобных случаях обычно говорят: «Теория – это хорошо, а как на практике?» Необычайно трудно зафиксировать то, как «мечется» электрон внутри отведенной ему области, и тем не менее в 2013 г. с помощью специально сконструированного квантового микроскопа, зафиксировавшего атом водорода, такое удалось сделать Анете Стодольна из Института атомной и молекулярной физики, Нидерланды (рис. 4.18).
Размытое облако на снимке напоминает показанную ранее картинку с перемещениями электрона вокруг ядра (см. рис. 4.4а). Таким образом, сферическая форма s-орбитали подтвердилась, и можно полагать, что со временем мы сможем увидеть и форму р-орбиталей, определенную экспериментально. Впрочем, квантовые химики уже не сомневаются, что формы всех орбиталей – именно такие, как на показанных выше рисунках, поскольку они хорошо согласуются с различными химическими экспериментами, а также со спектральными и структурными исследованиями.