Ознакомительная версия. Доступно 13 страниц из 64
Цикада.
Известно, что количество простых чисел бесконечно, то есть не существует самого большого простого числа. Евклид доказал это еще две тысячи лет назад. Другое, но очень простое доказательство таково: предположим, что ряд простых чисел не бесконечен. Тогда можно было бы все простые числа перемножить: 2 × 3 × 5 × 7 и так далее, вплоть до самого большого из них. Обозначим получившееся гигантское произведение буквой P и прибавим к нему 1. Теперь у нас есть только два варианта: либо число P + 1 простое, либо оно делится на какое-либо другое, меньшее простое число. Но если разделить P + 1 на любое из простых чисел в нашем списке (а он, как мы условились, включает в себя все существующие простые числа), в остатке всегда останется 1. Это значит, что либо число P + 1 тоже простое, либо оно имеет простой делитель, которого нет в списке. Таким образом, начав с предположения, что существует некое наибольшее простое число, мы пришли к противоречию. В логике и математике этот прием называется “доказательством от противного” (частный случай “доведения до абсурда”, reductio ad absurdum) – когда несостоятельность какого-либо утверждения доказывают, демонстрируя абсурдность его следствий. Значит, исходное предположение неверно, а стало быть, истинно противоположное ему утверждение: существует бесконечное множество простых чисел. Это последнее утверждение называется теоремой Евклида.
В древности математикам нелегко было высчитывать простые числа. В классической Греции точно знали, что 127 – простое, так как это вытекает из “Начал” Евклида. Возможно, были известны и другие, бо́льшие простые числа – до нескольких сотен, а то и тысяч. В эпоху Возрождения были найдены и существенно бо́льшие, среди них и 524 287, рассчитанное математиком Пьетро Катальди из Болоньи, известным охотником за простыми числами. После публикации трудов французского монаха XVII века Марена Мерсенна, посвятившего немало лет изучению чисел вида 2n – 1, где n – натуральное (называемых сегодня “числа Мерсенна”), поиск простых чисел сосредоточился именно в этом направлении. Числа Мерсенна – главные подозреваемые, поскольку вероятность, что любое выбранное наугад число из их ряда окажется простым, гораздо выше, чем у других случайных нечетных чисел аналогичной величины (хотя далеко не все числа Мерсенна простые). Первые несколько простых чисел Мерсенна (то есть чисел Мерсенна, которые одновременно являются простыми) – это 3, 7, 31 и 127. Находка Катальди – это девятнадцатое из чисел Мерсенна (M19) и седьмое из простых чисел Мерсенна. Прошло почти полтора столетия, прежде чем швейцарский математик Леонард Эйлер нашел в 1732 году большее простое число. Еще полтора века спустя, в 1876 году, рекорд поставил Эдуард Люка, доказавший, что 127-е число Мерсенна (M127), равное приблизительно 170 ундециллионам[32], также является простым.
Хотя многие из чисел Мерсенна действительно простые, сам Мерсенн допустил в своих расчетах несколько ошибок. Например, он определил как простое число M67. Делители этого числа впервые нашел в 1903 году Фрэнк Нельсон Коул. 31 октября математика пригласили сделать часовой доклад в Американском математическом обществе. Во время лекции Коул, не говоря ни слова, подошел к доске и вручную сначала вычислил значение числа 267 – 1, а затем перемножил 139 707 721 и 761 838 257 287, продемонстрировав, что результаты совпадают, – и молча же вернулся на свое место под гром аплодисментов. Позже он признался, что на то, чтобы найти делители числа 267 – 1, у него ушло “три года воскресений”.
С 1951 года поиск простых чисел ведется исключительно с помощью компьютеров. Появление все более быстрых алгоритмов позволяет математикам вычислять все бо́льшие и бо́льшие простые числа Мерсенна. На момент написания этой книги самое большое известное простое число – M74207281, имеющее 22 338 618 знаков. Его вычислил 17 сентября 2015 года Кёртис Купер, профессор Университета Центрального Миссури, в рамках проекта GIMPS (Great Internet Mersenne Prime Search, “Масштабный интернет-проект по поиску простых чисел Мерсенна”) – добровольного совместного проекта распределенных вычислений, участники которого за двадцать с лишним лет его существования уже рассчитали пятнадцать самых больших простых чисел Мерсенна. По сложившейся традиции авторы открытия отметили свой успех, откупорив бутылку шампанского.
Итак, мы знаем, что такое простые числа, и доказали, что их ряд бесконечен. Нам известно, что в современном мире они могут приносить пользу и что они встречаются в природе. Но в области простых чисел еще много белых пятен: например, мы не знаем, верны ли определенные гипотезы. Одна из наиболее известных – проблема Гольдбаха, названная так в честь немецкого математика Христиана Гольдбаха. Гипотеза гласит, что любое четное число, большее двух, можно представить в виде суммы двух простых чисел. Для малых четных чисел это утверждение легко проверить: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 и так далее. С помощью компьютеров были проверены и гораздо большие числа – правило не подвело ни разу. Однако до сих пор неизвестно, верна ли гипотеза Гольдбаха во всех случаях.
Другая недоказанная гипотеза касается пар простых чисел, отличающихся на 2: таких как 3 и 5 или 11 и 13, – их еще называют числами-близнецами. Гипотеза о числах-близнецах гласит, что таких пар – бесконечное множество, однако доказать истинность этого утверждения пока никому не удалось.
Пожалуй, самая большая загадка простых чисел связана с их распределением. Среди малых натуральных чисел простые встречаются очень часто, но с ростом значений – все реже и реже. Математиков интересует, с какой скоростью убывает плотность простых чисел и как много мы вообще способны узнать об их частоте в числовом ряду. Какой-то строгой закономерности в их появлении не наблюдается, но это вовсе не значит, что они выскакивают где попало. В своей книге “Рекорды простых чисел” (The Book of Prime Number Records) Пауло Рибенбойм формулирует это таким образом:
Можно с довольно хорошей точностью предсказать количество простых чисел, меньших N (особенно при больши́х значениях N); с другой стороны, в распределении простых чисел в коротких интервалах наблюдается некая заложенная случайность. Это сочетание “случайности” и “предсказуемости” приводит к тому, что распределению простых чисел свойственны одновременно и упорядоченность, и элемент неожиданности.
Загадка простых чисел волнует многие поколения математиков. А ведь кажется, куда проще – даже дети в начальной школе могут объяснить, что такое простые числа, назвать несколько первых из них и определить, простое число или нет. Вот и Агниджо заинтересовался простыми числами в очень раннем возрасте, а заодно и кое-какими из нерешенных проблем вокруг них. А со временем этот интерес привел к увлечению другими великими тайнами теории чисел.
Ознакомительная версия. Доступно 13 страниц из 64