Топ за месяц!🔥
Книжки » Книги » Домашняя » Как не ошибаться. Сила математического мышления - Джордан Элленберг 📕 - Книга онлайн бесплатно

Книга Как не ошибаться. Сила математического мышления - Джордан Элленберг

332
0
На нашем литературном портале можно бесплатно читать книгу Как не ошибаться. Сила математического мышления - Джордан Элленберг полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 ... 160
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 32 страниц из 160

Именно там Абрахам Вальд встретил войну.

Группа статистических исследований (Statistical Research Group; далее по тексту – SRG){2}, в которой Вальд работал на протяжении большей части Второй мировой войны, выполняла секретную программу; ее цель состояла в том, чтобы собрать крупнейших американских специалистов по статистике и использовать их возможности для решения военных задач. Это напоминало Манхэттенский проект, только в качестве оружия, разработкой которого занималась SRG, выступали уравнения, а не взрывчатые вещества. Кроме того, SRG располагалась действительно на Манхэттене, в районе Морнингсайд-Хайтс, в доме 401 на Западной 118-й улице – всего в одном квартале от Колумбийского университета. Сейчас в этом доме находятся квартиры профессоров Колумбийского университета и несколько кабинетов врачей, но в 1943 году это был живой и блестящий мозговой центр военной математики. В одном из помещений располагалась Группа прикладной математики Колумбийского университета; десятки молодых женщин корпели над калькуляторами Marchant, рассчитывая формулы для оптимальной траектории движения истребителя, позволявшей ему постоянно держать вражеский самолет на прицеле. В другом помещении команда исследователей Принстонского университета разрабатывала схемы стратегических бомбардировок. А по соседству группа ученых Колумбийского университета работала над созданием атомной бомбы.

Однако SRG была самой сильной и, по большому счету, самой влиятельной из всех этих групп. В SRG царила атмосфера интеллектуальной открытости и интенсивной научной мысли – все работали с ощущением общей цели, которое возникает только при решении задач особой важности. «Когда мы давали рекомендации, – писал руководитель SRG Уилсон Аллен Уоллис, – их использовали. Пулеметы истребителей, вступавших в бой, были снаряжены согласно рекомендациям Джека Вулфовица[3] по поводу того, как смешивать боеприпасы разных типов, – и летчики либо возвращались, либо нет. Топливо ракет, которые запускали самолеты военно-морских сил, проходило проверку в соответствии со схемой выборочного контроля Эйба Гиршика – и эти ракеты либо взрывались и уничтожали наши собственные самолеты и наших летчиков, либо поражали цель»{3}.

Математический талант членов группы соответствовал важности задачи. По словам Уоллиса, «как с точки зрения количества, так и с точки зрения качества SRG была самой выдающейся группой специалистов по статистике из всех когда-либо созданных»{4}. В группе работали: Фредерик Мостеллер – впоследствии основатель факультета статистики Гарвардского университета; Леонард Джимми Сэвидж[4] – первопроходец теории принятия решений и большой приверженец области математики, позже ставшей известной как байесовская статистика. В SRG время от времени заглядывал Норберт Винер – математик Массачусетского технологического института, создатель кибернетики. Это был коллектив ученых, в котором почетное четвертое место среди самых толковых занимал Милтон Фридман – будущий лауреат Нобелевской премии по экономике.

А первое место по праву закрепилось за Абрахамом Вальдом. Вальд – преподаватель Аллена Уоллиса в Колумбийском университете – стал для всей группы своего рода высочайшим математическим авторитетом. Впрочем, как «подданный враждебного государства» с юридической точки зрения Вальд не имел права видеть секретные отчеты – те отчеты, которые он собственноручно составлял. В SRG шутили, что секретари обязаны буквально вырывать из-под его пера каждый листок бумаги тут же, как только он его допишет{5}. При этом Вальд практически не вписывался в общую направленность группы: он был очень далек от решения прикладных задач, поскольку его всегда интересовала лишь абстрактная математика. Однако в данном случае верх взяла его личная заинтересованность: посвятить свой талант антифашистской борьбе. Так или иначе, но Вальда сочли именно тем человеком, которого лучше было иметь на своей стороне – тем более, когда возникала необходимость перевести расплывчатые мысли на язык точных математических формулировок.

* * *

Задача заключалась в следующем. Вы не хотите, чтобы вражеские истребители сбивали ваши самолеты, поэтому покрываете их броней. Но броня делает самолет более тяжелым, что снижает его маневренность и увеличивает расход топлива. Если на самолете слишком много брони – это проблема; если брони слишком мало – это тоже проблема. Где-то в интервале лежит оптимальное решение. Чтобы вычислить этот идеальный вариант, вы собираете под крышей нью-йоркской квартиры команду лучших математиков{6}.

Военные представили на рассмотрение SRG данные, которые, по их мнению, могли бы помочь в решении задачи. Когда американские самолеты выходили из воздушных боев над Европой, они были покрыты дырами от пуль. Однако повреждения распределялись по корпусу самолета не равномерно. Пробоин на фюзеляже было больше, чем на двигателе.



Представители командования увидели возможность повысить эффективность использования самолетов, обеспечив такой же уровень защиты в его уязвимых местах, для этого требовалось правильно распределить количество брони, делая ее слой толще там, где самолет получает больше всего пробоин. Но сколько именно брони следует устанавливать на этих частях самолета? С просьбой найти нужное решение военные обратились к Вальду. И получили совсем неожиданный ответ.

Броню следует укреплять не там, сказал Вальд, где больше всего пробоин, а там, где их нет, то есть на двигателе.

Ознакомительная версия. Доступно 32 страниц из 160

1 2 3 4 ... 160
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Как не ошибаться. Сила математического мышления - Джордан Элленберг», после закрытия браузера.

Комментарии и отзывы (0) к книге "Как не ошибаться. Сила математического мышления - Джордан Элленберг"