Я должен внести некоторую ясность. Хоть я и говорю, что все явления физического мира можно объяснить этой теорией, но в действительности мы этого не знаем. Большинство известных нам явлений происходит с участием такого гигантского количества электронов, что проследить за ними не под силу нашему бедному рассудку. В подобных случаях мы можем использовать теорию, чтобы хоть приблизительно вычислить, что должно происходить. Примерно это и происходит на самом деле.
Но если мы поставим в лаборатории эксперимент всего с несколькими электронами в простых условиях, мы сможем с очень большой точностью рассчитать, что должно происходить, и провести очень точные измерения. В таких условиях квантовая электродинамика работает прекрасно.
Мы, физики, всегда стараемся проверить, все ли в порядке с теорией. Такова игра, потому что, если что-нибудь не так, становится интересно! Но до сих пор мы не нашли ничего неправильного в квантовой электродинамике. Поэтому я бы сказал, что это жемчужина физики и предмет нашей величайшей гордости.
Квантовая электродинамика является также прототипом новых теорий, которые пытаются объяснить ядерные явления – то, что происходит внутри атомных ядер. Если представить физический мир как театр, актерами в нем будут не только электроны, находящиеся вне ядер атомов, но и кварки, глюоны, и т. д. – десятки типов частиц внутри ядра. И хотя все эти «актеры» совершенно не похожи друг на друга, все они играют в определенном стиле – странном и необычном – в «квантовом стиле». В конце я расскажу вам немного про ядерные частицы. А сейчас, чтобы было проще, я буду рассказывать только про фотоны (частицы света) и электроны. Потому что тут важно, как именно они играют свои роли, а играют они их очень интересно.
Теперь, когда вы знаете, о чем я собираюсь рассказывать, возникает вопрос, сможете ли вы понять то, что я намерен рассказать. Каждый, кто приходит на научную лекцию, уверен, что ничего там не поймет, но если у лектора красивый галстук, то будет на что посмотреть. Но не в этом случае! (Фейнман не носит галстуков.)
То, о чем я собираюсь вам рассказывать, студенты-физики изучают на третьем или четвертом курсе – и вы думаете, что я собираюсь это объяснить так, чтобы вы все поняли? Нет, вы не сможете этого понять. Зачем же я буду докучать вам всем этим? Зачем вам сидеть и слушать все это, если вы все равно ничего не поймете? Моя задача – убедить вас не отворачиваться из-за того, что вы этого не понимаете. Дело в том, что мои студенты-физики тоже этого не понимают. Потому что я сам этого не понимаю. Никто не понимает.
Мне хотелось бы сказать несколько слов о понимании. Существует много причин, по которым вы можете не понимать, о чем говорит лектор. Одна из них – плохой язык. Лектор не может выразить то, что хочет, или начинает не с того конца – и его трудно понять. Это довольно простой случай, и я буду изо всех сил бороться со своим нью-йоркским акцентом.
Другая причина, особенно если лектор – физик, состоит в том, что он употребляет обычные слова в необычном значении. Физики часто используют обычные слова, например, «работа», или «действие», или «энергия», или даже, как вы увидите, «свет» – в необычном, специальном смысле. Так, говоря о «работе» в физике, я имею в виду одно, говоря о «работе» на улице – совсем другое. Во время лекции я могу употребить одно из таких слов, не замечая, что употребляю его необычным образом. Я буду стараться следить за собой – это моя обязанность, но такую ошибку легко совершить.
Следующая причина, по которой вы можете решить, что не понимаете, о чем я говорю, состоит в том, что, когда я буду описывать, как устроена Природа, вы не поймете, почему она так устроена. Но знаете, ведь этого никто не понимает. Я не могу объяснить, почему Природа ведет себя именно так, а не иначе.
Наконец, возможно и такое: я сообщаю вам нечто, а вы не можете в это поверить. Вы этого не принимаете. Вам это не нравится. Опускается завеса, и вы больше ничего не слушаете. Я буду рассказывать, как устроена Природа, если вам не понравится, как она устроена, это будет мешать вашему пониманию. Физики научились решать эту проблему: они поняли, что нравится им теория или нет – не важно. Важно другое – дает ли теория предсказания, которые согласуются с экспериментом. Тут не имеет значения, хороша ли теория с философской точки зрения, легка ли для понимания, безупречна ли с точки зрения здравого смысла. Квантовая электродинамика дает совершенно абсурдное с точки зрения здравого смысла описание Природы. И оно полностью соответствует эксперименту. Так что я надеюсь, что вы сможете принять Природу такой, как Она есть – абсурдной.
Я с удовольствием предвкушаю рассказ об этой абсурдности, потому что она, по-моему, восхитительна. Пожалуйста, не отворачивайтесь из-за того, что вы не можете поверить, что Природа устроена так странно. Выслушайте меня до конца, и я надеюсь, что, когда мы закончим, вы разделите мое восхищение.
Как я буду объяснять вам вещи, о которых не рассказываю своим студентам до третьего курса? Позвольте провести такую аналогию. Индейцев майя интересовали восходы и заходы Венеры. Им было очень интересно знать, когда она появляется как утренняя звезда, а когда – как вечерняя. После многолетних наблюдений они заметили, что пять циклов Венеры почти в точности равны восьми 365-дневным календарным годам (они знали, что астрономический год отличается от календарного и учитывали это в своих расчетах). Чтобы производить вычисления, майя изобрели систему черточек и точек, изображающих числа (включая нуль), и вывели правила, по которым рассчитывали и предсказывали не только восходы и заходы Венеры, но и другие небесные явления, например лунные затмения.
В те времена лишь немногие жрецы майя умели производить столь сложные вычисления. Теперь представим себе, что мы бы спросили одного из них, как сделать всего одно действие из сложного процесса предсказания следующего утреннего появления Венеры – как вычесть одно число из другого. И предположим, что в отличие от нынешнего времени мы не ходили в школу и не умеем вычитать. Каким образом жрец объяснил бы нам, что такое вычитание?
Он мог бы или научить нас числам, изображаемым черточками и точками, и правилам вычитания, или рассказать нам, что он на самом деле делал: «Предположим, мы хотим вычесть 236 из 584. Прежде всего отсчитаем 584 боба и положим их в горшок. Затем вынем 236 бобов и отложим в сторону. Наконец, сосчитаем бобы, оставшиеся в горшке. Это число и будет результатом вычитания 236 из 584».
Вы можете сказать: «О, Кецалькоатль![1] Какая тоска – считать бобы, класть в горшок, вынимать из горшка – ну и занятие!»
На что жрец ответил бы: «Именно поэтому у нас есть правила для черточек и точек. Правила сложные, но при помощи этих правил гораздо легче получить ответ, чем пересчитывая бобы. Но что касается ответа, то совершенно не важно, каким способом он получен: мы можем предсказать появление Венеры, считая бобы (этот способ медленный, но простой и понятный) или применяя сложные правила (это намного быстрее, но требует многих лет учебы в школе).