Топ за месяц!🔥
Книжки » Книги » Домашняя » Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин 📕 - Книга онлайн бесплатно

Книга Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин

347
0
На нашем литературном портале можно бесплатно читать книгу Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 ... 87
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 18 страниц из 87

Но математика не ограничивается бухгалтерскими вычислениями, ее потенциал гораздо шире. Математика может быть дерзкой и увлекательной, успех может зависеть от баланса терпеливости и авантюризма. Попробуем переформулировать рутинную задачу, приведенную выше, в таком духе:



Эта задачка уже по-настоящему захватывающая. Она противопоставляет площадь и периметр. Вы не просто пользуетесь формулой; в процессе решения вам необходимо постичь суть прямоугольника. (Спойлеры — в примечаниях[4].)

Или как насчет такого:



В этом уже есть какая-то перчинка, не правда ли?

За два быстрых шага мы перескочили от сомнамбулически нудной работы к довольно любопытной небольшой головоломке, и у шестиклассников горят глаза, когда я закидываю им эту задачу в качестве дополнительного вопроса на итоговом экзамене. (Ответ — опять-таки в примечаниях[5].)

Творчество требует свободы, но одной свободы недостаточно. Псевдоголоволомка «нарисуйте два прямоугольника» подразумевает не только свободу, но и неизбежность скучных математических вычислений. Головоломка должна быть непредсказуемой, чтобы вызвать настоящий творческий порыв.

Вернемся к жестким крестикам-ноликам. У вас есть всего несколько вариантов каждого хода — вероятно, три или четыре. Их достаточно, чтобы включилось ваше воображение, и не настолько много, чтобы вы захлебнулись в море бессчетных альтернатив. Игра представляет собой гармонию жестких правил и свободы выбора.

И это великолепная иллюстрация того удовольствия, которое доставляет математика: творчество, порожденное непредсказуемостью. Привычные крестики-нолики — это математика с точки зрения большинства людей; жесткие крестики-нолики — это математика, какой она должна быть.



Вы можете найти множество аргументов в пользу того, что все творческие порывы стремятся нарушить четкие правила. По словам физика Ричарда Фейнмана, «творчество — это воображение в надежной смирительной рубашке». Жесткие правила сонета — «Укладывайся в ритм! Соблюдай длину строки! Следи за рифмовкой! Окей… а теперь выражай свою любовь, Вильям ты наш Шекспир!» — не ограничивают, а совершенствуют мастерство. Или возьмем, к примеру, спорт. Футболисты должны достичь определенной цели (забить мяч в ворота), следуя твердым правилам (нельзя дотрагиваться до мяча руками). В процессе игры они изобретают удар «ножницами» (удар через себя в падении) или удар «рыбкой» (удар головой в падении). Пренебрегая правилами, вы теряете изящество. Даже авангардное искусство — экспериментальный фильм, экспрессионистская картина, профессиональный реслинг — обретают силу благодаря тому, что выбор средств самовыражения ограничен.

Математики делают еще один концептуальный шаг. Мы не просто следуем заранее заданным правилам — мы изобретаем их и заигрываем с ними. Мы делаем предположение, выводим его логические следствия — и если они ведут в никуда или, что гораздо хуже, если они наводят скуку, мы ищем новый и более плодотворный путь.



Например, что произойдет, если я усомнюсь в постулате о параллельных прямых?

Евклид изложил этот закон параллельных прямых примерно в 300 году до н. э.; он принял его как должное и назвал фундаментальным предположением («постулатом»). Его преемники сочли это несколько смехотворным. Мы действительно должны принимать на веру данное утверждение? Может быть, его можно доказать? На протяжении двух тысячелетий ученые ковыряли это правило, как волоконце мяса, застрявшее между зубов. В конце концов они поняли: «О да! Это всего лишь предположение». Вы можете предположить иное. В таком случае традиционная геометрия обрушится и уступит место диковинным альтернативным геометриям, где слова «параллельность» и «прямая» имеют совершенно другой смысл.



Новое правило — новая игра.

То же самое работает в случае с жесткими крестиками-ноликами. Вскоре после того, как я стал пропагандировать эту игру, я увидел единственную техническую деталь, на которой все держится. Она сводится к вопросу, которого я уже касался раньше. Как быть в том случае, если мой противник перенаправляет меня на мини-поле, которое уже сыграно?

Сейчас мой ответ совпадает с тем, который я приводил выше. Если мини-поле уже сыграно, вы можете выбрать любое другое.



Но изначально мой ответ был другим. До тех пор, пока на этом мини-поле остаются пустые клетки, вам необходимо идти туда и делать ход, даже если он лишен смысла.

Это кажется мелочью — всего лишь одна нить в гобелене игры. Но посмотрите, как вся ткань распустится, если потянуть за нее.

Я покажу суть старого правила с помощью дебютной стратегии, которую я окрестил (в порыве скромности) «гамбитом Орлина»:

Ознакомительная версия. Доступно 18 страниц из 87

1 2 3 4 ... 87
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин», после закрытия браузера.

Комментарии и отзывы (0) к книге "Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин"