Топ за месяц!🔥
Книжки » Книги » Домашняя » Занимательная химия для детей и взрослых - Илья Леенсон 📕 - Книга онлайн бесплатно

Книга Занимательная химия для детей и взрослых - Илья Леенсон

429
0
На нашем литературном портале можно бесплатно читать книгу Занимательная химия для детей и взрослых - Илья Леенсон полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 ... 85
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 17 страниц из 85

Но откуда взялся М. Вюрц в энциклопедии Якобсона? Очевидно, референт, готовивший ссылку для этой энциклопедии (им был некий Д. С. Аллен из городка Нью-Полтс, штат Нью-Йорк), попался на удочку, о которой в свое время рассказал Ф. К. Величко в статье «Непризнанный Демзельбен», опубликованной в журнале «Природа», 1972, № 2. Вот что он пишет: «Иногда встречаешь список литературы, в котором почти все французы – Мишели, во всяком случае инициалы их начинаются с буквы М. Оказывается, во французских химических журналах до сих пор принято писать: (статья) господина такого-то (к примеру, Дебрэ). Это выглядит как «par M. Debre», и вот Debre перекочевывает в список литературы в виде M. Debre». Значит, М. Wurtz означает просто Monsieur Wurtz, т. е. господин (месье) Вюрц!

Как бы то ни было, словарь Вюрца имел репутацию весьма обстоятельного труда, именно на него дается ссылка в энциклопедии Якобсона, а уже из этой энциклопедии, возможно, заимствовали реакцию FeC2O4 = Fe + 2CO2 и Б. В. Некрасов, и другие авторы. Забавно, но в том же томе энциклопедии Якобсона можно найти также реакцию FeC2O4 = FeO + CO + CO2 со ссылкой на работу 1916 г. немецких химиков К. А. Гофмана и К. Шумпельта. Эта работа была посвящена реакции разложения солей муравьиной кислоты (формиатов) металлов и потому, видимо, не обратила на себя внимания тех, кто интересовался разложением солей щавелевой кислоты. Однако другой референт энциклопедии (на этот раз это был У. Вагнер из Детройта), который разыскал работу немецких авторов, сумел среди 15 страниц мелкого шрифта оригинальной статьи отыскать реакцию разложения именно оксалата железа.

И еще одна неожиданность при первом знакомстве с историей вопроса: оказывается, реакцией термического разложения оксалата железа в разное время интересовались многие знаменитые химики: Иоганн Вольфганг Дёберейнер (1780–1849), Юстус Либих (1803–1873), Фридрих Вёлер (1800–1882), лауреат Нобелевской премии Анри Муассан (1852–1907), Анри Ле Шателье (1850–1936). Упоминавшийся ранее Густав Магнус, обнаружив при разложении оксалата железа вспыхивающий на воздухе черный порошок, решил, что образовалось пирофорное железо. К такому же выводу пришел в 1854 г. его соотечественник А. Фогель. Но уже в следующем году Ю. Либих, изучив продукт разложения в отсутствие воздуха более внимательно, пришел к выводу, что образуется в основном оксид FeO и немного металлического железа. В том же году друг Либиха Вёлер провел реакцию восстановления оксалата железа водородом; естественно, он получил чистое железо. В 1880 г. А. Муассан получил не загрязненный примесями FeO, охлаждая продукт разложения в токе СО. Бельгийский химик С. Бирни, проведя в 1883 г. реакцию в токе азота, обнаружил в продукте железо, его оксид, а также примесь углерода – от 1 до 1,5% (в расчете на исходный оксалат). В последующем другие химики также обнаруживали в продуктах разложения большее или меньшее количество примесей железа и углерода.

Расхождение результатов, полученных разными химиками, – явление не такое уж редкое. То же происходило, например, при выяснении возможности существования таких соединений, как Bi2O5, CuSO3 и ряда других, когда результаты разных работ противоречили друг другу. В случае оксалата железа вопрос, казалось бы, легко решить, проанализировав состав твердого продукта разложения. Можно, например, точно взвесить исходный образец, а потом – продукт реакции. А дальше – простая школьная задачка: из 1 моля FeC2O4· 2H2O (163,9 г) получится либо 55,85 г продукта в случае образования только железа, либо 71,85 г, если получился только оксид FeO, либо что-то промежуточное, если получится смесь, откуда легко рассчитать ее состав. Можно поступить иначе: взвесив продукт реакции, растворить его в кислоте и определить содержание в растворе железа (хотя бы осадив снова тот же оксалат). Наконец, можно проанализировать состав выделившихся при разложении газов, который будет разным при образовании железа и его оксида.

В действительности не все так просто. Во-первых, в первой половине XIX в. не у всех химиков были достаточно точные весы. Даже знаменитый шведский химик Йёнс Якоб Берцелиус имел в молодые годы плохо оборудованную лабораторию с довольно грубыми весами, поэтому для получения надежных результатов он был вынужден повторять один и тот же анализ по 20–30 раз! Во-вторых, и это главное, состав продукта зависит от условий проведения опыта: от чистоты и степени обезвоженности исходной соли, от скорости и конечной температуры нагрева, наконец, от того, проводится ли разложение в присутствии воздуха, инертного газа или в вакууме. Следует также учитывать, что между Fe, FeO, CO и CO2 при высокой температуре возможны вторичные реакции. Кроме того, FeO термодинамически устойчив только при температуре выше 570 °С, при более низких температурах он диспропорционирует на Fe и Fe3O4, причем чем ниже температура, тем медленнее идет эта реакция. В результате некоторые химики (например, уже упоминавшийся С. Бирни) обнаруживали смесь, содержащую в разных пропорциях Fe и FeO, а также углерод.

Можно было предположить два разных пути протекания реакции. Так, М. Гершкович (его статья опубликована в 1921 г. в немецком «Журнале неорганической и общей химии») считал, что в случае металлов группы железа (Fe, Co, Ni) разложение их оксалатов дает сначала чистый металл: МеС2О4 = Ме + 2СО2, а затем этот металл (который выделяется в особо активной – пирофорной форме) восстанавливает СО2 – частично до СО, а иногда даже до углерода, а сам при этом окисляется до МеО или других оксидов.

Другой точки зрения придерживались П. Л. Гюнтер и Х. Рехаг (их статья опубликована в том же журнале в 1939 г. под красноречивым названием «Термическое разложение оксалатов. Часть II. Синтез чистого FeO». Они поместили сухой FeC2O4· 2H2O в трубку и нагрели ее до 850 °С, а чтобы не было вторичных реакций, быстро откачивали газообразные продукты (СО и СО2) вакуумным насосом. В результате образовался только оксид FeO с чистотой 99,98 %! В статье был сделан вывод о том, что оксалат, нагретый выше 300 °С, разлагается по уравнению FeC2O4 = FeO + CO + CO2, однако соотношение СО : СО2 = 1 : 1 реализуется не всегда, так как, несмотря на откачку газов могут идти вторичные реакции: FeO + CO = Fe + CO2, 2CO = CO2 + C, 4FeO = Fe3O4 + Fe. (Отметим, что в 1-й части статьи, опубликованной годом раньше, авторы изучали термическое разложение оксалатов Nd, Na, Ca, Ba и Th – во всех случаях продуктом был пероксид металла.) Этот результат позднее подтвердили другие химики. Так, французский химик Ж. Робен получил твердые растворы оксидов различных металлов, в том числе железа, кобальта и никеля, разлагая оксалаты этих металлов. А его соотечественники А. Булле и Ж. Доремье изучали в 1959 г. влияние состава газовой атмосферы на термическое разложение оксалатов Fe, Co, Ni. Оказалось, что углекислый газ замедляет скорость распада, тогда как кислород ускоряет реакцию, снижая одновременно температуру разложения (для оксалата железа – на 140 °С!).

Отечественные химики, изучавшие эту реакцию, тоже не пришли к единому мнению. В 1954 г. сотрудник Томского государственного университета В. В. Болдырев изучал скорость разложения FeC2O4 в разных условиях. При температуре 270 °С за минуту разлагается примерно половина вещества, независимо от того, что´ нагревать – дигидрат FeC2O4· 2H2O или предварительно обезвоженную в вакууме при 200 °С соль. Состав продуктов разложения не приведен. В том же году Я. А. Угай из Воронежского государственного университета (он известен студентам многих вузов как автор учебника по общей химии) провел термографическое исследование разложения оксалатов двухвалентных металлов (Fe, Ni, Co, Mn, Cu, Zn, Cd, Hg, Sn, Pb, Mg, Ca, Sr, Ba), а также самой щавелевой кислоты. В ходе реакции он не только измерял температуру образца, но и контролировал тепловые потоки термографическим методом. Это позволило Угаю определить температуру, при которой начинается тот или иной процесс, а также измерить его тепловой эффект. Изученные оксалаты по отношению к нагреванию разделились на две группы: CuC2O4 и HgC2O4 разлагались с выделением теплоты, остальные – с ее поглощением. Вот какие результаты получились для некоторых оксалатов:

Ознакомительная версия. Доступно 17 страниц из 85

1 ... 28 29 30 ... 85
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Занимательная химия для детей и взрослых - Илья Леенсон», после закрытия браузера.

Комментарии и отзывы (0) к книге "Занимательная химия для детей и взрослых - Илья Леенсон"