Ознакомительная версия. Доступно 6 страниц из 30
Успехи атомной физики, физики полупроводников и химии полимеров на какое-то время затмили свет знаний, исходящий от исследований живых объектов. Изучение принципов их устройства и функционирования, которые до недавнего времени были уделом рассеянных чудаков, со временем стало приносить свои плоды.
Вообще следует заметить, что в науке и технике по мере более глубокого проникновения в суть вещей и явлений наблюдается все большее приближение к природным «техническим устройствам». И если пока технический уровень изделий, изготовленных человеком, или эффективность технологических процессов все же отстают от природных аналогов, то поневоле напрашивается мысль использовать их в готовом виде. В этом, возможно, и заключается основной смысл биотехнологических подходов.
Человечество давно использует для своих нужд оба биологических царства — растительное и животное. Сейчас наступило время, когда мы вплотную подошли к тому, чтобы извлекать пользу из всех возможностей третьего биологического царства — царства микроорганизмов.
На первых этапах его освоения человечество следовало проторенной дорогой, копируя опыт использования возможностей мира растений и животных и получая главным образом продукты питания. Со времен Левенгука до нашего времени микробиология прошла большой путь: от не имеющих никакого практического применения наблюдений за таинственным миром «анималькулей» до получения с помощью микроорганизмов различных веществ, производство которых достигает сотен и тысяч тонн. Но это только первый этап освоения возможностей царства микроорганизмов, которые обладают значительно бóльшими возможностями: с их помощью можно попытаться разработать не имеющие аналогов технологии. Ниже мы рассмотрим некоторые возможности микроорганизмов, которые открыли новую эру — эру биотехнологии. Следует отметить, что имеются в виду не только микробиологические способы получения в больших количествах различных веществ. Биотехнология — это базовая основа новейших технологий, остро необходимых человечеству уже сейчас.
Какие же требования к ним предъявляются? Прежде всего, они должны быть экологически чистыми или безотходными, энергосберегающими и, наконец, экономически выгодными.
Давайте же вместе посмотрим, удовлетворяют ли этим требованиям некоторые прикладные направления микробиологии и биотехнологии.
Начнем с энергетики. В течение длительного времени человек получал энергию за счет сжигания древесины. Однако этот путь уже не мог удовлетворить его растущие энергетические потребности. Проблема была решена за счет ископаемого топлива, ставшего в настоящее время одним из основных источников энергии.
В главе, посвященной геологии, мы останавливались на биотехнических приемах использования микроорганизмов при разработке месторождений нефти и угля. Но ископаемого топлива становится все меньше. За каких-то 200 лет эффективного использования его запасы еще не исчерпаны, но оставшееся количество заставляет всерьез задуматься о других источниках энергии. И здесь на помощь приходят микробиологические способы получения спиртов из возобновляемых источников сырья (подробно этот вопрос освещен в главе 26 «Микробы вытесняют бензин»). Здесь хотелось бы добавить, что этот путь доведен до уровня промышленной эксплуатации, что позволило, например, Бразилии начиная с 1991 г. ежегодно экономить $3,5 млрд за счет снижения импорта нефти и нефтепродуктов. Это яркий пример, иллюстрирующий экономические возможности биотехнологии.
Использование метанола и этанола в качестве моторного топлива или добавок к нему иллюстрирует существенный вклад микробиологии в решение энергетической проблемы. Однако более перспективными, по всей вероятности, являются биотехнологические способы производства энергии, основанные на получении водорода из возобновляемых источников и его утилизации в биотопливных элементах, обладающих высоким КПД. Еще одним основанием для такой точки зрения является экологическая чистота водородной энергетики.
Биотехнология позволяет одновременно решать как энергетические, так и экологические проблемы. Так, микробиологическая переработка органических отходов, решая задачу охраны окружающей среды, позволяет получать биогаз, не уступающий по калорийности природному. Получение этого газа, образующегося при метановом брожении органических отходов, не требует ни разведки, ни бурения скважин, ни прокладки многокилометровых газопроводов. В результате стоимость биогаза оказывается ниже стоимости природного. Кроме того, его производство, по крайней мере в обозримом будущем, обеспечено сырьевой базой, каковой являются органические отходы городов. Их общая масса, пригодная для производства этанола, только в США составляет около 1 млрд тонн. Утилизация органических отходов микробиологическим способом и сама по себе экологически чиста, так как практически безотходна: получаемые отходы в виде шлама могут быть использованы как удобрения и, таким образом, включены в биологический цикл. Однако не следует забывать, что сама микробиологическая промышленность является в свою очередь источником экологических загрязнений. Действительно, производство кормовых дрожжей только в нашей стране составляет 1,5 млн тонн. Естественно, что при таких масштабах довольно велики и отходы. Культуральная жидкость после отделения дрожжей содержит значительное количество минеральных веществ, витаминов и продуктов метаболизма. Как их использовать? Каковы вообще пути создания экологически чистых или безотходных производств?
Здесь опять образцом для подражания служит живая природа. Рассматривая схему метаболических путей (последовательность превращений веществ в клетке), мы видим, что одно вещество является субстратом для определенной ферментативной реакции, а вновь полученный продукт, в свою очередь, служит субстратом для последующей.
Аналогичная последовательность должна быть создана и в системе безотходного производства. Отходы одного производства должны служить сырьем (основой) для следующего, и так до тех пор, пока в результате не получатся вещества, не обладающие негативным воздействием на экологическую ситуацию.
Однако создать такую же ферментативную «мельницу» для разрушения экологически опасных субстратов до углекислого газа и воды довольно затруднительно. Можно, правда, попытаться использовать в этих целях различные группы микроорганизмов, биохимическая активность которых последовательно соединяется в процессы, проходящие в биохимической «мельнице» клетки.
Так, отходы, получаемые при культивировании дрожжей и остающиеся после их сепарации, можно использовать для культивирования других микроорганизмов, а отходы, остающиеся после этого (второго) культивирования, послужат субстратом для метанового брожения. И, наконец, отходы метанового брожения тоже могут быть с успехом утилизированы, правда, уже не для выращивания микроорганизмов.
При добавлении в бетон метановой бражки в количестве 0,3 % от массы замеса его прочность увеличивается на 40 %, на 12 % уменьшается расход воды, возрастает морозоустойчивость и увеличивается расплыв конуса — важнейшая характеристика бетона.
Таким образом, есть способ избавиться от отходов различных брожений, используя их в качестве пластификаторов бетона. Для этих целей можно применять мелассу, последрожжевую барду и уже описанную выше метановую бражку. Эти отходы микробиологического производства, будучи замешенными в бетон, теряют экологически негативное влияние и, кроме того, придают ему дополнительные положительные качества.
Ознакомительная версия. Доступно 6 страниц из 30