DOI: 10.1038/s41562-020-00956-y. Epub 2020 Sep 28. PMID: 32989287; PMCID: PMC7116623.
31. Wade, K.H., Lam, B.Y.H., Melvin, A. et al. (2021). Loss-of-function mutations in the melanocortin 4 receptor in a UK birth cohort. Nat Med 27, 1088–1096. https://doi.org/10.1038/s41591-021-01349-y.
32. Blackshow, S., Hoang T., Wang J., Boyd P. et al. (2020, March 23). Crossspecies transcriptomic and epigenomic analysis reveals key regulators of inj ury response and neuronal regeneration in vertebrate retinas.bioRxiv 717876. DOI: https://doi.org/10.1101/717876.
33. Hoang T., Wang J., Boud P. et al. (2020, October 1). Gene regulatory networks controlling vertebrate retinal regeneration. Science, 370(6519). DOI: 10.1126/science.abb8598.
34. Dong, Q., Gentry N.W., McMahon Th. et al. (2022, April 15). Familial natural short sleep mutations reduce Alzheimer pathology in mice. Cell 25(4), 103964. DOI: https://doi.Org/10.1016/j. isci.2022.103964.
Глава 3
1. Guell, М. Gene editing in translational research (2019). Rev. 47. Bioetica & Derecho 5. Retrieved from https:// heinonline.org/HOL/LandingPage?handle=hein. journals/ rebiod47&div=4&id=&page.
2. Fikes, B.J. (2017, October 17). Yescarta, second blood cancer gene therapy, approved by FDA. The San Diego Union-Tribune. Retrieved from https://www.sandiegouniontribune.com/business/biotech/ sd-me-yescarta-cancer-20171018-story.html.
3. Mullin, E. (2017, August 30). FDA Approves Groundbreaking Gene Therapy for Cancer. MIT Technology Review. Retrieved from https://www.technologyreview.com/2017/08/30/149399/the-fda-has-approved-the-first-gene-therapy-for-cancer/.
4. High, K. A., George, L., Sullivan, S. et al. (2016, June 11). AAV-mediated gene therapy for hemophilia B-expression at therapeutic levels with low vector doses. EHA. Retrieved from https://library.ehaweb.org/eha/2016/21st/135342/spencer. sullivan.aav-mediated.gene.therapy.for.hemophilia.b-expression. at.html?f=pl6m3111619..
5. George, L.A., Sullivan, S.K. et al. (2017, December 7). Hemophilia В Gene Therapy with a High-Specifi c-Activity Factor IX Variant N Engl J Med; 377:2215-27. DOI: 10.1056/NEJMoal708538. Retrieved from https://www.nejm.org/doi/full/10.1056/ NEJMoal708538.
6. Cideciyan, A.V., Jacobson, S.G., Ho, A.C. et al. Durable vision improvement after a single treatment with antisense oligonucleotide sepofarsen: a case report. Nat Med 27, 785–789 (2021). https://doi. org/10.1038/s41591-021-01297-7.
7. Yu-Wai-Man, P., Newman, N.J., Carelli V. et al. (2020, December 9). Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Science Translational Medicine 12(573). DOI: 10.1126/scitranslmed.aaz7423.
8. Maloney, D.M., Chadderton, N., Millington-Ward, S. et al. (2020, November 26). Optimized OPA1 Isoforms 1 and 7 Provide Therapeutic Benefit in Models of Mitochondrial Dysfunction. Front. Neurosci., Sec. Neurodegeneration, https://doi.org/10.3389/ fnins.2020.571479.
9. Batabyal, S., Gajjeraman, S., Pradhan, S., Bhattacharya, S., Wright, W., Mohanty, S. (2021 April). Sensitization of ON-bipolar cells with ambient light activatable multi-characteristic opsin rescues vision in mice. Gene Ther. 28(3–4): 162–176. DOI: 10.1038/s41434-020-00200-2. Epub 2020 Oct 22. PMID: 33087861; PMCID: PMC9191254.
10. Shubina-OleinikO., French C. et al. (2021, Dec 15). Dual-vector gene therapy restores cochlear amplification and auditory sensitivity in a mouse model of DFNB16 hearing loss. Science Advances. Vol 7, Issue 51. DOI: 10.1126/sciadv.abi7629.
11. Wegmann, S., DeVos, S.L., Zeitler, B. et al. (2021). Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Sci. Adv. 7, eabel611. DOI: 10.1126/sciadv. abel611.
12. Safety Study ofAADC Gene Therapy (V Y-А ADC01) for Parkinson’s Disease (AADC). University of California, San FranciscoVeristat, Inc., Feinstein Institute for Medical Research. Retrieved from https://clinicaltrials.gov/ct2/show/NCT01973543.
13. Oregon Health and Science University Voyager Therapeutics (2013–2020). Retrieved from https://clinicaltrials.gov/ct2/show/study/ NCT01973543? term=AADC&rank=2.
14. Cachôn-Gonzalez M.B., Wang S.Z., Lynch A., Ziegler R., Cheng
S.H., Cox T.M. (2006 Jul 5). Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci USA. 103(27): 10373-10378. DOI: 10.1073/pnas.0603765103. Epub 2006 Jun 26. PMID: 16801539; PMCID: PMC1482797. Retrieved from https://pubmed.ncbi.nlm.nih.gov/16801539/.
15. Flotte, T.R., Cataltepe, O., Puri, A. et al. AAV gene therapy for Tay-Sachs disease. Nat Med 28, 251–259 (2022). Retrieved from: https:// doi.org/10.1038/s41591-021-01664-4.
16. Yonekawa T., Rauckhorst A.J., El-Hattab S. et al. (2022). Largel gene transfer in older myd mice with severe muscular dystrophy restores muscle function and greatly improves survival. Sci. Adv., 8 (21), eabn0379. DOI: 10.1126/sciadv.abn0379. Retrieved from https://www.science.org/doi/10.1126/sciadv.abn0379.
Глава 4
1. Ormond, K.E., Mortlock, D.P., Scholes, D.T. et al. Human Germline Genome Editing. Am J Hum Genet. (2017, Aug 3). 101(2): 167–176. PubMed: 28777929. Free full-text available from PubMed Central: PMC5544380.
2. Gupta, R.M., Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest. (2014, Oct). 124(10): 4154-61. DOI: 10.1172/JCI72992. Epub 2014 Oct 1. PMID: 25271723; PMCID: PMC4191047.
3. Hsu, P.D., Lander, E.S., Zhang, F. (2014 Jun 5). Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157(6): 1262-78.DOI:10.1016/j.celL2014.05.010.Review.PubMed:24906146. Free full-text available from PubMed Central: PMC4343198.
4. Komor, A.C., Badran, A.H., Liu, D.R. (2017 Apr 20). CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. 169(3): 559. D01:10.1016/j.cell.2017.04.005. PubMed: 28431253.
5. Lander, E.S. (2016 Jan 14). The Heroes of CRISPR. Cell. 164(1–2): 18–28. D01:10.1016/j.cell.2015.12.041. Review. PubMed: 26771483.
6. Liang, P, Xu, Y, Zhang, X. et al. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes Protein. Cell 6,363–372. DOI: 10.1007/S13238-015-0153-5. PMID: 25894090. PMCID: PMC4417674.
7. Kaminski, R., Chen, Y, Fischer, T. et al. (2016). Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR. Cas9 Gene Editing. Sci Rep 6,22555. DOI: 10.1038/srep22555. PMID: 27389633. PMCID: PMC4936507.
8. Marchione,M.(2018).Chineseresearcherclaimsfirstgene-editedbabies. Retrieved from https://apnews.com/4997bb7aa36c45449b488el9 ac83e86d.
9. Kinling Lo. (2019). Chinas gene-editing ‘Frankenstein jailed for three years in modified baby case. South China Morning post. Retrieved from https://www.scmp.com/news/china/science/ article/3043894/chinas-gene-editing-frankenstein-jailed-3-years-modified-baby.
10. Xu, L„Wang, J„Liu, Y. et al. (2019). CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. N Engl J Med. 381: 1240–1247. DOI: 10.1056/NEJMoal817426. PMID: 31509667. Retrieved from https://www.nejm.org/doi/ full/10.1056/NEJMoal817426?query=TOC#article_citing_articles.
11. Brown, T.R. (2015, Jan). I Am the Berlin Patient: A Personal Reflection. AIDS Research and Human Retroviruses, 31(1), pp. 2–3. DOI: 10.1089/aid.2014.0224
12. Gupta, R.K., Abdul-Jawad, S., McCoy, L.E. et al. (2019). HIV-1 remission following CCR5A32/A32 haematopoietic stem-cell transplantation. Nature 568,244–248. DOI: 10.1038/s41586-019-1027-4.
13. Wilson, C. (2019, March 5). A third person may have become HIV-free after a bone marrow transplant. Newscientist. Retrieved from https://www.newscientist.com/article/2195780-a-third-person-may-have-become-hiv-free-after-a-bone-marrow-transplant/.
14. Gallagher J. Fourth patient seemingly cured of HIV (2022 July 27). BBC News. Retrieved from: https://www.bbc.com/news/health-62312249.
15. McKay B. Woman Appears Cured of HIV After Umbilical-Cord Blood Transplant (2022, February 15). The Wall Street Journal. Retrieved from https://www.wsj.com/articles/woman-appears-cured-of-hiv-after-umbilical-cord-blood-transplant-11644945720-?mod=hp_lead_poslO.
16. CRISPR Therapeutics and Vertex Announce Positive Safety and Efficacy Data From First Two Patients Treated With Investigational CRISPR/Cas9 Gene-Editing Therapy CTX001® for Severe Hemoglobinopathies. CRISPR Therapeutics. Press Release. Retrieved from http://ir.crisprtx.com/news-releases/news-release-details/crispr-therapeutics-and-vertex-announce-positive-safety-and#.
17. Haridy, R. (2019, November 19). Encouraging early results from first human CRISPR gene therapy trials. New Atlas. Retrieved from https:// newatlas.com/medical/encouraging– early-results-first-human-crispr-gene-therapy-trials/.
18. Revolutionary CRISPR-based genome editing system treatment destroys cancer cells (2020, November 18). News Release. Peer-Reviewed Publication American Friends of