Ознакомительная версия. Доступно 24 страниц из 120
японских исследователей заставляла амебу Physarum polysarum решать классическую задачу коммивояжера – поиск оптимального маршрута через n городов. Причем не в простом варианте выбора из 3 вариантов маршрута для 4 «городов», а из 2 520 вариантов движения для 8 пунктов назначения (число вариантов = (n – 1)!/2).
Амеба, умеющая, казалось бы, только вытягивать свои ложноножки в сторону еды и сжимать их в сторону от света, была поставлена в условия, когда ей нужно вытягивать свои выросты по всему своему периметру в каналы с едой в их конце. Выбор канала влиял на частоту выключения света в других каналах и служил аналогом «удаленности» других «городов» от выбранного. Неожиданно, но амеба решала эту задачу оценки своей окружающей среды быстрее большинства современных компьютеров! Таким же весьма показательным образом некоторые реснитчатые черви (планарии) способны вычислять «самих себя»: рассеченный хоть на 279 частей вдоль, поперек или наискось червячок длиной не более 2 см способен полностью восстановиться из каждой отдельной части. Если планарию бить током и при этом светить ярким светом в микроглазки, эту комбинацию воздействия запомнит каждый из достаточно больших обрубков: восстановившись до целого червяка, каждый из обрубков будет съеживаться от новых вспышек света, то есть планария помнит всем телом.
Нет оснований считать, что вычислительные возможности гораздо более сложных организмов, включая человека, хоть сколько-то меньше. Однако их нацеленность и заточенность на решение гораздо более сложных, менее дефинированных и трудноформулируемых нашим языком задач не позволяет им в обыденной жизни проявлять такие удивительные феномены, на которые способны «простейшие» организмы в обработке семантической информации. Весьма похоже, что чем меньше или проще автономный информационный агент, тем на большие вычислительные «чудеса» он способен с простой человеческой точки зрения.
Где возникают смыслы и цели? Гипотеза безмасштабной когнитивности
Тем не менее изначальный вопрос, в какой момент базовая квантовая информация может начать соответствовать требованиям смысловой (семантической) макроинформации, и, соответственно, могут возникать автономные агенты, остается пока без определенного ответа. В любом случае можно сказать, что органические молекулы, имея возможность «выбирать» из нескольких стабильных состояний, уже обладают тезаурусом, и, таким образом, могут в составе динамической системы приобретать цель в данном информационном смысле.
Д. С. Чернавский (2004) выводит возможность спонтанного возникновения цели у элемента информационной системы (то есть системы, способной воспринимать, запоминать и генерировать информацию) из формальных математических оснований, на основании анализа поведения модели автономной динамической многокомпонентной мультистабильной системы, являющейся условным подобием живой или протоживой системы, или системы живых существ. Анализируемая Д. С. Чернавским модель информационной динамической системы многочленна: она включает временной член автокаталитического воспроизводства, отрицательный (то есть антагонистический) член взаимодействия разнородных элементов, член перенаселенности однородных элементов. В расширенный вариант модели добавлены выражения, симулирующие взаимопомощь однородных элементов, сотрудничество (симбиоз) разнородных элементов и модернизацию «своей» информации элемента.
Как показано Д. С. Чернавским, в таких информационных динамических системах с заданными свойствами целью каждого элемента становится сохранение своей информации. Эквивалентными формулировками данной цели с измененными акцентами могут, по Д. С. Чернавскому, быть «выбор такой информации, которая сохранится в будущем» и «распространение своей информации на всю систему». В последней формулировке можно увидеть ее конгруэнтность идее «заразности» бита квантовой информации Сета Ллойда. Можно зафиксировать, что индивидуальность объекта (агента), обладающего «разумностью» (достаточной вычислительной сложностью в обмене информацией с окружающей средой, предиктивностью и так далее), то есть живого, соотносится со способностью поддерживать цель в сообразном ему масштабе системы. А сама цель, как показано выше, в принципе, может возникать спонтанно. В обзорной визионерской работе Майкла Левина (Michael Levin, 2020) близкие положения формализируются на основе огромного свода публикаций последних лет в форме гипотезы «безмасштабной когнитивности» (Scale-Free Cognition). Вот ее основные положения в кратком, насколько возможно, изложении:
1. Когнитивная индивидуальность (Self, «Я» объекта) может быть определена по отношению к способности преследовать отдельные цели через поддержание гомеостаза, сопротивляющегося возмущениям.
2. Когнитивный мир индивидуальности характеризуется пространственно-временными границами его области интереса, в которых она может измерять, влиять и функционально связывать разрозненные события.
3. Границы временных и пространственных событий, которые могут быть измерены и воздействованы данной системой, составляют «когнитивный световой конус» – границу в информационном пространстве «разума» системы. Эти границы могут увеличиваться или уменьшаться во временных масштабах эволюции или индивидуального развития (онтогенеза). Ключевым моментом является поддержание баланса селективного совместного использования информации (balance of selective information sharing) через некие «синапсы» – в данном случае произвольные физические структуры. «Синапсы» позволяют совместно использовать свою способность регулировать прохождение сигналов на основе состояния аналогичных элементов. Недостаточность совместного использования ведет к неспособности объединить субъединицы в новую индивидуальность. Чрезмерность совместного использования (в пределе – абсолютная равнодоступность информации) приводит к однородному бульону с недостаточной дифференциацией составных частей и недостаточным абстрагированием информации.
4. Расширение масштабов агентов движется их активной интерференцией с окружением. Объединение в более крупные коллективы с оптимальной информационной структурой улучшает вычислительные (предиктивные) возможности и порождает функциональные связи.
5. Инфотаксис (стремление к лучшей действенной разумности/пониманию типичных паттернов во внешнем окружении и внутри собственных механизмов агента) побуждает отдельных агентов объединяться в группы посредством обмена информацией через сигнальные системы. Можно сказать, что идея инфотаксиса – это мотор гипотезы когнитивной индивидуальности, заставляющий агентов «двигаться», взаимодействовать и выбирать стратегию. Вообще, изначально идея инфотаксиса – это выбор той стратегии поиска информации, которая максимизирует ожидаемые выгоды (Vergassola M, Villermaux E. and Shraiman B, 2007).
6. Важно сотрудничество не само по себе, а сотрудничество эгоистичных агентов, сводящее к минимуму их стресс (неожиданность) и конкуренцию за информацию. Стремление отдельного агента к информации (инфотаксис) стимулирует кооперативность, поскольку каждая единица расширяет свои вычислительные границы через обмен информацией с соседями и неизбежно становится частью большей индивидуальности с более крупными гомеостатическими аттракторами. Это выглядит как чистая кооперация только с точки зрения более высокого уровня.
7. Между анатомическими механизмами контроля и когнитивными механизмами существует фундаментальная симметрия. Совместная коэволюция и экзаптация (функциональное перепрофилирование) служат драйверами взаимного расширения механизмов, контролирующих формирование морфофункциональных паттернов и поведенческие цели.
8. Нейроны используют те же биоэлектрические вычислительные стратегии, которые использовались эволюцией еще в древних бактериях. Функциональный изоморфизм (внешнее подобие) между формированием паттернов и когнитивными процессами также отражается в древней молекулярной консервации механизмов: практически идентичные ионные каналы и нейротрансмиттеры распространены повсеместно по всему древу жизни. Биоэлектрическая интеграция помогла развить стратегии управления и когнитивный контент по всему континууму от химических сетей до человеческого разума.
9. Существует глубокая функциональная масштабная инвариантность, проявляющаяся в единой структуре принятия решений отдельными клетками при формировании тела нового организма, работой колонии насекомых и интегрированным поведением человека в обществе: это кибернетические процессы обучения и оптимизации параметров, реализуемые
Ознакомительная версия. Доступно 24 страниц из 120