Топ за месяц!🔥
Книжки » Книги » Домашняя » Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман 📕 - Книга онлайн бесплатно

Книга Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман

161
0
На нашем литературном портале можно бесплатно читать книгу Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 26 27 28 ... 85
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 17 страниц из 85

Двумерная оптимизация

В дальнейшем мы будем рассматривать примеры, относящиеся к двумерной оптимизации. Будем использовать те же два параметра, что и в предыдущем примере: период истории для расчета HV (параметр, который оптимизировали в предыдущем примере) и количество дней до экспирации опционов (значения этого параметра были зафиксированы). Для первого параметра область допустимых значений находится в диапазоне от пяти до 300 дней, шаг оптимизации – пять дней. Для количества дней до экспирации диапазон значений составляет от двух до 120 дней, шаг оптимизации – два дня. Таким образом, полное оптимизационное пространство состоит из 3600 узлов (60 × 60).

На рис. 2.2.2 показано двумерное оптимизационное пространство целевой функции «средняя прибыль». Одномерные пространства, обсуждавшиеся ранее, представляют собой три частных случая этого двумерного пространства. Поскольку рис. 2.2.2 представляет собой топографическую карту, то вертикальные разрезы, проведенные по значениям 4, 32 и 108 параметра «число дней до экспирации», совпадают с профилями одномерных пространств, показанных на рис. 2.2.1. Несомненно, двумерное оптимизационное пространство позволяет получить лучшее представление о целевой функции и обо всей торговой стратегии в целом.



Глобальный максимум оптимизационного пространства, представленного на рис. 2.2.2, имеет координаты 30 по горизонтальной оси и 105 по вертикальной. Это означает, что средняя прибыль (то есть целевая функция) достигает своего максимума в том случае, когда позиции открываются, используя опционы, до истечения которых остается 30 дней, а историческая волатильность, используемая для расчета критерия, оценивается на историческом периоде длиной 105 дней. Данный глобальный максимум расположен на вершине небольшого «хребта», протянувшегося вдоль 30-й вертикали (параметр «число дней до экспирации») в диапазоне от 80 до 125 (параметр «горизонт истории для расчета IV»).

Данный хребет можно рассматривать, как оптимальную область, поскольку все узлы, расположенные в пределах этой зоны, имеют высокое значение целевой функции (> 6 %). Сама оптимальная область также окружена достаточно широкой областью, состоящей из узлов с относительно высокими значениями целевой функции. Поэтому найденное оптимальное решение можно в принципе считать робастным. Однако следует оговориться, что робастность оптимального решения неодинакова по двум параметрам. Изменения значений параметра «период истории для расчета HV» в пределах оптимальной зоны и вокруг нее приводят к меньшим изменениям целевой функции, чем изменения параметра «число дней до экспирации» (при отступлении от оптимального значения этого параметра [30 дней] в большую или меньшую сторону происходит резкое снижение целевой функции). Следовательно, робастность первому параметру выше робастности по второму.

Рассматриваемое оптимизационное пространство можно условно считать унимодальным. Это утверждение основывается на том, что оптимальная область возвышается достаточно высоко над остальной поверхностью (в случае двумерной оптимизации пространство можно называть поверхностью). Вместе с тем, поскольку данная поверхность не является гладкой, утверждение об унимодальности можно вполне оспорить. Помимо оптимальной области, данная поверхность содержит еще множество участков, в которых значение целевой функции не просто положительно, а колеблется в пределах довольно неплохого диапазона (2–4 %). По этой причине данную поверхность можно в принципе считать полимодальной. Хотя вопрос классификации не является для нас первостепенным, сам факт наличия локальных максимумов заставляет задуматься о том, что глобальный максимум может оказаться не самым лучшим решением. Если какой-нибудь локальный максимум имеет значение целевой функции, не слишком уступающее глобальному максимуму, но при этом его робастность существенно выше робастности глобального максимума, то вполне может оказаться, что наилучшим решением будет выбрать такой локальный максимум в качестве оптимального решения. Сделать объективный выбор можно, только применив какую-нибудь количественную методику, чему будет посвящен раздел 2.5.

Для того чтобы получить полное представление о форме и свойствах оптимизационного пространства, показанного на рис. 2.2.2, необходимо было вычислить значения целевой функции во всех 3600 узлах. Поскольку данная оптимизация рассчитывалась на 10-летней базе данных (как и все прочие оптимизации, рассматриваемые в этой главе), расчет одного узла занял порядка одной минуты. Соответственно, расчеты для всего оптимизационного пространства заняли порядка 60 часов. Для нашего исследования это вполне приемлемо, но для оперативной практической работы такие большие временные затраты не всегда допустимы. Особенно если учесть, что в реальности может быть больше двух параметров, и каждый параметр может иметь больше 60 значений в своем диапазоне. Кроме того, 3600 – это число узлов, которые необходимо вычислить только для одной целевой функции, а их обычно бывает больше (около трех-четырех). Поэтому на практике в большинстве случаев невозможно вычислить все оптимизационное пространство. Вместо этого приходится применять методы целенаправленного поиска оптимального решения (этому вопросу посвящен раздел 2.7).

2.2.2. Область допустимых значений параметров

В этом разделе мы рассмотрим, каким образом диапазон допустимых значений параметра влияет на форму оптимизационного пространства и на поиск оптимального решения. Начнем с того, что для каждого из двух параметров сократим вдвое диапазоны значений (относительно диапазонов, использовавшихся в предыдущем разделе). Для параметра «период истории для расчета HV» верхняя граница нового диапазона составит 150 дней, для параметра «количество дней до экспирации опционов» – 60 дней. Эти ограничения приведут к сжатию объема оптимизационного пространства в четыре раза. (В случае трехмерной оптимизации сокращение диапазона значений в два раза привело бы к восьмикратному сжатию объема.) В этом состоит положительный эффект такого сокращения диапазонов, поскольку теперь для построения полного пространства потребуется произвести 900 вместо 3600 вычислений.

На левом графике рис. 2.2.3 показано оптимизационное пространство, построенное для новых диапазонов допустимых значений. Сравнение этого уменьшенного пространства с более обширным вариантом (рис. 2.2.2) убеждает в том, что область глобального максимума не была потеряна в результате введения более жестких ограничений на диапазон допустимых значений параметров. Теперь эта область находится почти в центре пространства. Кроме того, за рамками нового оптимизационного пространства осталась большая часть области низких значений целевой функции. Это означает, что доля области оптимальных значений относительно общего объема оптимизационного пространства существенно возросла. Следовательно, вероятность нахождения глобального максимума в процессе поиска оптимального решения (используя методы, не требующие полного перебора) также повысилась. Однако, выбирая область допустимых значений, следует исходить из того, что мы не знаем, как выглядит полное оптимизационное пространство. Поэтому, сокращая диапазон допустимых значений, мы можем исключить из рассмотрения хорошую область, содержащую наилучшее решение.

Ознакомительная версия. Доступно 17 страниц из 85

1 ... 26 27 28 ... 85
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман», после закрытия браузера.

Комментарии и отзывы (0) к книге "Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман"