Ознакомительная версия. Доступно 18 страниц из 88
Это также означает, что звезды могут иметь – и имеют – разные размеры. Первоначальный диаметр звезды зависит от массы сжимающегося газового облака. Чем больше масса, тем выше давление в ядре. Чем выше давление, тем активнее реакции термоядерного синтеза. Чем больше термоядерной энергии, тем выше температура и давление. Наконец, достигается гидростатическое равновесие при размере намного большем, чем у Солнца. Природа выпекла массивную, горячую и яркую звезду-гигант.
Напротив, если исходное газовое облако мало, плотность ядра остается низкой. Термоядерный синтез идет медленно, если вообще начинается. Внутренняя область звезды остается относительно холодной, давление не слишком высоко. Гидростатическое равновесие устанавливается, когда звезда сожмется примерно до 10 % размера Солнца – примерно с Юпитер. Результат: маловесная, прохладная и относительно тусклая звезда-карлик.
Если вы считаете, что звезды-карлики – это пустяк, то вы ошибаетесь. Начнем с того, что их намного больше, чем крупных и ярких звезд. В природе малое всегда имеет численное превосходство перед большим. Мышей больше, чем слонов, гальки больше, чем каменных глыб, астероидов больше, чем планет, – это общий принцип. Но карликовые звезды не только более многочисленны, но и живут намного дольше гигантских.
Живут дольше – но почему? Как это возможно? Раз они маленькие, значит, имеют меньше ядерного топлива, чем звезды-гиганты! Верно, у них меньшие, скажем так, «топливные баки». Но звезды-карлики еще и чрезвычайно скупы. Термоядерный синтез идет медленно и может продолжаться десятки миллиардов лет, несмотря на относительно малый запас водорода.
Если звезды-карлики – это медленные экономные микролитражки Вселенной, то звезды-гиганты – неэффективные пожиратели космического топлива. Пусть у них намного больше газа, они активно его тратят. Проходит не так уж много времени, как они выжигают весь запас водорода. Самые массивные звезды во Вселенной могут жить лишь около 1 млн лет.
Наше Солнце – нечто среднее. Не слишком массивное, не слишком маловесное. Как я уже говорил, оно находится примерно на середине ожидаемой продолжительности жизни в 10 млрд лет. Но, как и любая другая звезда, оно не будет жить вечно. Поскольку астрономы наблюдали другие солнцеподобные звезды на более поздних стадиях жизненного цикла, они знают, когда и как Солнце умрет.
В следующие несколько миллиардов лет водород в ядре Солнца истощится, поскольку по большей части превратится в гелий. Дальше от центра в толстой оболочке вокруг нового ядра с высоким содержанием гелия реакция слияния ядер водорода продолжится. Вследствие этого внешние слои будут постепенно расширяться. Наше Солнце медленно превратится в гигантскую звезду. Это печальная новость для всего живого на Земле. Не пройдет и 1 млрд лет, Солнце станет выделять столько энергии, что океаны нашей планеты начнут испаряться.
Тем временем гелиевое ядро становится все больше и массивнее. Ядра гелия упаковываются все плотнее. Постепенно, примерно через 5 млрд лет от нынешнего времени, плотность становится достаточно высокой для запуска следующего цикла ядерных реакций. Обойдемся без подробностей из области квантовой механики: из гелия синтезируются еще более тяжелые элементы – сначала углерод, затем кислород.
При термоядерном синтезе гелия выделяется намного больше энергии, чем при синтезе водорода. Из-за этой добавочной энергии Солнце расширится и станет красным сверхгигантом диаметром намного больше 100 млн км. Бедные Меркурий и Венера! Две ближайшие к светилу планеты Солнечной системы будут поглощены, их минералы и металлы перейдут в состояние перегретого пара, который смешается с внешними слоями Солнца, – величественная картина уничтожения планет.
Что касается Земли, то при некотором везении она избегнет адского пекла. Этому будет способствовать процесс, который я называю звездной лихорадкой, – верный признак близкого конца. Солнце начнет пульсировать, расширяясь и сжимаясь примерно каждые 24 часа. Побочным следствием станет постепенное сдувание в космос наружных слоев водорода. Сопутствующая потеря массы ослабит силу тяготения Солнца, воздействующую на планеты, и их орбиты расширятся. Этот эффект слишком слаб, чтобы спасти Меркурий и Венеру, но Земля может уцелеть, хотя ее каменная мантия покроет всю поверхность океаном раскаленной лавы (выживание – понятие относительное).
В течение 10 000 или 20 000 лет бóльшая часть мантии Солнца будет сдута в окружающее пространство, образовав красочный расширяющийся пузырь. На сегодняшний день астрономы внесли в каталоги тысячи подобных короткоживущих пузырей в Млечном Пути, но их должно быть намного больше. В силу исторической традиции они называются планетарными туманностями. Вильяму Гершелю, который первым описал их в конце XVIII в., они напомнили округлые диски планет, и название закрепилось.
Тем временем взрывной синтез гелия подходит к концу. Прошло (по вселенским меркам) мгновение, а бóльшая часть гелия в Солнце превратилась в углерод и кислород. Когда выделение энергии, противодействующей гравитации, прекращается, ядро звезды сжимается, пока не превратится в диковинный объект – белый карлик. В нем около половины первоначальной массы Солнца упаковано в сферу размерами не намного больше Земли. Его плотность – около 1 кг/мм3.
Сначала белые карлики чрезвычайно горячи. Температура на их поверхности может достигать 100 000 °С. Но из-за небольшой площади поверхности они не излучают много света. Даже самый близкий – до него менее 10 св. лет – известный нам белый карлик невозможно увидеть невооруженным глазом. Белый карлик медленно остывает, излучая остаточное тепло в ледяной космический вакуум.
Остается темный неактивный ком вырожденной материи – звездный шлак.
Покойся с миром, Солнце!
_________
Причем здесь нейтронная звезда? Возможно, следовало сразу сказать, что Солнце недостаточно массивно, чтобы превратиться в нейтронную звезду. Как ни удивительны белые карлики, нейтронные звезды – еще более поразительные объекты. Чтобы сотворить их, нужно начать со звезды как минимум в 9 раз массивнее Солнца.
Как уже отмечалось, массивные звезды живут быстро и умирают молодыми. Их ожидаемая продолжительность жизни измеряется миллионами, а не миллиардами лет, как если бы эволюцию солнцеподобной звезды ускорили, нажав кнопку быстрой перемотки. Водородный синтез, расширение внешних оболочек, поджиг синтеза гелия, образование углеродно-кислородного ядра, потеря наружной водородной мантии – все происходит намного быстрее.
Дальнейшие события развиваются совершенно иначе. Причина проста. В звезде, имеющей массу, значительно превышающую солнечную, внешние слои сильно давят на ядро. Достигаются гораздо более высокие плотность и температура углеродно-кислородного ядра, чем это будет у Солнца: более 3 кг/мм3 и около 500 млн °C. Этого хватает для запуска очередного цикла реакций термоядерного синтеза, только теперь атомный двигатель в ядре звезды работает не на водороде, а на углероде.
Если оставить детали в стороне, примерно через 1000 лет (в зависимости от массы звезды) углерод превращается в неон, магний, натрий и кислород – космическая алхимия! Как только углерод заканчивается, ядро звезды снова начинает сжиматься. Его плотность и температура еще сильнее увеличиваются – настолько, что неон переходит в магний.
Ознакомительная версия. Доступно 18 страниц из 88