Ознакомительная версия. Доступно 14 страниц из 67
Где в этой схеме находится ℝ? Мы выяснили, что Но можем ли мы определить мощность ℝ в точности? Сколько всего действительных чисел?
Тайна семьи множеств
Вообразите: вы переступаете порог великолепного сооружения. За огромными воротами – мраморная лестница, ведущая в дивные палаты. Но стоит вам открыть дверь в подвал, как картина резко переменится. Там вы обнаружите ржавые трубы, искрящую проводку, бьющий в глаза электрический свет и разбитый пол, а может, и скопища тараканов. Подвал ужасен, но здания наверху без него не было бы.
Это хорошая метафора для сооружения под названием «математика». Как мы уже говорили в начале главы, все объекты в математике (от чисел до кругов) можно определить через другие объекты, попроще. Рано или поздно мы дойдем до самого дна и обнаружим объект, через который объясняются все другие. Это и будет множество.
Мы определили множество как набор объектов[89], но не сказали, что такое набор (в общем-то, это просто другое слово вместо «множества»), и не задались вопросом, какого рода объекты мы собираем вместе (и даже не дали определение объекта). Как нам выпутаться из этой ситуации?
Вначале математики относились к ней довольно беззаботно. Говорили просто: есть такая штука – множество и есть свойство «быть элементом множества», которое обозначают символом, а раз так, то можно двигаться дальше[90]. Но все это рано или поздно приводит к затруднениям.
Первое множество, приходящее нам в голову, – пустое множество. Там нет никаких элементов, и мы обозначаем его символом ∅. Мощность пустого множества равна нулю, и утверждение x ∈ ∅ ложно для любого x (потому что внутри ∅ ничего нет).
Дальше нам приходит в голову, что множества можно характеризовать через свойства их элементов. Например, множество четных чисел задают следующим образом:
Форма записи {x | свойства x} определяет множество всех объектов, обладающих указанными свойствами.
А дальше возникает уйма сложностей.
В начале XX века философ и математик Бертран Рассел[91] размышлял о множестве A = {x | x – такое множество, что x ∉ x}.
Это множество всех множеств, чьими элементами не являются они сами. Например, пустое множество удовлетворяет условию: ∅ ∉ ∅, потому что пустое множество не содержит элементов. Таким образом, ∅ ∈ A.
Дальше Рассел задал роковой вопрос: входит ли множество A во множество A?
• Если ответ «да», то A∈A. Но тогда не выполняется условие попадания во множество A: оно не должно быть элементом самого себя.
• Если ответ «нет», то A∉A. Тогда выполняется условие попадания во множество A, и оно является элементом самого себя.
Если A∈A, то A∉A. Если A∉A, то A∈A. Но не может же такого быть, что A и входит, и не входит в A! Что-то пошло не так[92].
Одно из решений этого противоречия заключается в том, что множества A просто не существует. Нет его, и все тут.
После работ Рассела подход к теории множеств претерпел существенные изменения. Четкие, ясные, применимые на практике правила закрепили, как формировать множества и какие операции с ними можно совершать[93]. Определение множества и ∈ входит в свод правил непрямым образом. Мы не объясняем, что́ это; мы просто описываем, как оно себя проявляет. Мы говорим, что есть такие вещи, как множества, у них есть определенные свойства, а еще есть правила, по которым мы с ними работаем. Эти правила не позволили парадоксу Рассела вздыбить свою безобразную голову, и противоречий больше не возникало.
Но вернемся к вопросу: сколько всего действительных чисел? Мы знаем, что мощность множества положительных целых чисел равна И мы знаем, что Следует ли из этого, что Иными словами, существуют ли множества, чья мощность больше, чем ℤ+, но меньше, чем ℝ?[94] Кантор верил, что но не мог найти доказательство; свое предположение он назвал континуум-гипотезой. Многие ученые заинтересовались этим вопросом. В 1900-е годы немецкий математик Давид Гильберт составил перечень важнейших математических проблем наступающего XX века. Доказательство (или опровержение) континуум-гипотезы вошло в его перечень первым номером.
Эту главную для Гильберта проблему разрешили неожиданным образом. Короткий, но исчерпывающий ответ звучит следующим образом: «Может быть и так, и этак».
Ну и ну! Математику ценят за то, что на все вопросы (обычно) находится точный ответ. «Может быть и так, и этак» разрушает определенность. Как с этим жить?
Работы Курта Гёделя (1940-х годов) и Пола Коэна (1960-х) показали, что общепринятые правила аксиоматической теории множеств неполны и потому не позволяют ответить на поставленный вопрос. Точнее говоря, эти математики продемонстрировали: нельзя ни доказать, ни опровергнуть то, что существуют множества, чья мощность больше, чем ℤ+, но меньше, чем ℝ. Другими словами, можно принять или допущение или допущение Дальше мы получим две разные математические системы. Обе корректны, просто непохожи друг на друга.
Ознакомительная версия. Доступно 14 страниц из 67