Во времена Евклида древние греки уже использовали систему счисления, основанную на египетском иератическом письме: 27 числам соответствовали 27 различных символов — букв греческого алфавита[65]. Например, число 444 записывалось как υµδ, поскольку символом υ обозначалось число 400, символом µ — 40 и δ — 4. Дроби описывались словами, скажем, «одиннадцать частей в восьмидесяти трех» или отображались в виде простых дробей с числителем и знаменателем, во многом напоминавших современную форму, такую как, хотя у греков сохранилось исторически сложившееся пристрастие к единичным дробям. Египетская и греческая системы представления чисел не годились для астрономии, поскольку для отслеживания движения планет необходимо рассчитывать малейшие доли углов, а простые и единичные дроби слишком громоздки для этого.
В Месопотамии, однако, применялась гораздо более гибкая система представления чисел. В Вавилоне использовалась позиционная система счисления, в которой значение каждой цифры зависело от ее позиции в числе. Современная числовая система — это десятичная позиционная система счисления. Например, в числе 123 цифра 3 находится в разряде единиц, цифра 2 — в разряде десятков и цифра 1 — в разряде сотен. Большим преимуществом позиционной системы счисления является то, что с ее помощью можно записывать дроби. В нашей системе счисления такие дроби называются десятичными. Например, в числе 0,56 цифра 5 находится в разряде десятых, а цифра 6 — в разряде сотых.
Вавилоняне применяли шестидесятеричную систему счисления, то есть в ее основу было положено число 60. (В вавилонской системе числа записывались в виде комбинации двух символов — вертикального клина и горизонтального клина.) До сих пор неизвестно, почему вавилоняне выбрали именно число 60 в качестве основания позиционной системы, хотя, возможно, это объясняется тем, что шестьдесят — минимальное число, которое делится на 1, 2, 3, 4, 5 и 6, а это упрощало решение ряда арифметических задач. Вавилоняне расширили свою систему представления чисел на дроби. У них не было специального «шестидесятеричного» символа, подобного нашей десятичной запятой, поэтому значение разрядов приходилось определять по контексту. Например, число 123 могло означать также, что цифра 1 находится в разряде единиц, цифра 2 — в разряде шестидесятых, а цифра 3 — в разряде 3600-х. Позиционные дроби значительно превосходят простые дроби, как мы знаем по собственному опыту применения десятичных дробей. Для их записи требуется меньше символов, и с ними проще делать расчеты. Вавилоняне умели извлекать корень из двух до трех шестидесятеричных разрядов, или с точностью около 0,000008 от истинного значения — поразительный результат для того периода. Легкость, с которой вавилоняне делили углы на более мелкие части, позволила им добиться выдающихся для своего времени успехов в астрономии.
Вавилоняне поделили круг на 360 градусов. Возможно, такое разбиение было связано с зодиакальным кругом, который состоял из 12 знаков зодиака и 36 декан (деканальных божеств), или с тем, что 360 — это примерное количество дней в году. Не так давно появилось еще одно предположение: число 360 выбрано потому, что, как показано на рисунке ниже, в окружность вписывается шесть равносторонних треугольников и каждый из углов в ее центре разделен на 60 частей, как того требуют шестидесятеричные дроби. Безусловно, все эти причины дополняли друг друга, и вавилонская система счисления оказалась чрезвычайно долговечной.
Во II столетии до нашей эры древние греки заимствовали вавилонские дроби, используемые до сих пор. Градус по традиции был разделен на 60 более мелких частей, каждая из которых обозначалась как pars minuta prima («часть мелкая первая») и состояла, в свою очередь, тоже из шестидесяти мелких частей, позиционируемых как pars minuta secunda («часть мелкая вторая»). От этих латинских выражений произошли слова минута и секунда, или единицы времени, — самые известные реликвии, доставшиеся нам от древней шестидесятеричной системы счисления.
Имея в своем распоряжении подходящую систему счисления, древнегреческий астроном Гиппарх приступил к составлению таблицы данных о соотношении сторон треугольника. Он делал это на основе хорды — отрезка, соединяющего две точки окружности и названного так потому, что он напоминает туго натянутую струну лука[66]. Каждая хорда с центром окружности образует треугольник, как показано на рисунке ниже
Если длина окружности постоянна, то углам с вершиной в ее центре соответствуют хорды разной длины. Гиппарх составил таблицу углов, кратных 7,5 градуса, с указанием длины хорд. Во II столетии нашей эры астроном Птолемей развил эту идею, создав таблицу хорд для окружности с радиусом 60 единиц, в которой была приведена длина хорд, соответствующих углам с интервалом в полградуса от 0 до 180 градусов, с точностью до третьего шестидесятеричного разряда. Таблицы хорд Гиппарха и Птолемея оказались бесценны для западных астрономов, рассматривавших Землю и другие небесные тела как вершины космических треугольников. Таким образом, треугольник стал первым телескопом за всю историю человечества, сделав внеземные объекты доступными для измерения.
В Индии в середине первого тысячелетия нашей эры астрономия процветала по той же причине, что и в Вавилоне: у индийцев тоже была позиционная система счисления, позволяющая им эффективно описывать как очень большие, так и очень малые числа. На самом деле индийская система счисления даже превосходила вавилонскую, поскольку основывалась на десятках, что было более удобно, чем группы по шестьдесят цифр. Кроме того, индийцы считали ноль полноправным числом, а не символом-заполнителем незначащих разрядов чисел, как вавилоняне. Индийские астрономы также пользовались таблицами длин сторон треугольников. Однако вместо хорд они их составили для полухорд. Как показано на верхнем рисунке, полухорда — это сторона прямоугольного треугольника, в котором радиус окружности представляет собой гипотенузу, а другая сторона — часть биссектрисы, перпендикулярной хорде. Концепция полухорд удобнее для расчетов, поскольку, как мы уже знаем, любой треугольник делится на прямоугольные треугольники. Позиционная система счисления индийцев и их знания о длине сторон треугольников получили распространение в арабском мире и со временем достигли Европы. Система представления чисел с помощью цифр от 0 до 9, которые мы используем в наше время, так же как и выбор полухорд, берет свое начало в индийской системе счисления.