Топ за месяц!🔥
Книжки » Книги » Домашняя » Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман 📕 - Книга онлайн бесплатно

Книга Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман

161
0
На нашем литературном портале можно бесплатно читать книгу Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 22 23 24 ... 85
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 17 страниц из 85

Необходимо подчеркнуть, что какой бы алгоритм выбора оптимального портфеля ни был принят к реализации при разработке автоматизированной торговой стратегии, от него во многом зависит, какой из вариантов дельта-нейтрального портфеля будет в конечном итоге использован для открытия позиций.

Глава 2. Оптимизация
2.1. Обзор основных понятий

Проблема выбора наилучшего решения возникает во всех сферах человеческой деятельности. Поиск оптимальных решений постоянно производится как на индивидуальном уровне, так и в масштабах различных финансовых, производственных и общегосударственных структур. Несмотря на многочисленный арсенал методов, разработанных для поиска оптимальных решений, единственного подхода, одинаково пригодного для всех случаев, не существует. Это связано и с разнообразием задач, и с ограниченностью средств для их решения (машинного времени, памяти и т. п.). Дать строго определенные, формализованные методы решения задач оптимизации может только синтетический подход, основанный на комбинированном применении достижений различных разделов математики.

Задача оптимизации может заключаться в поиске определенной структуры объекта (структурной оптимизации) или последовательности действий (календарной оптимизации). Однако в контексте построения автоматизированных торговых стратегий наибольший интерес представляет параметрическая оптимизация. В этом случае поиск наилучшего решения осуществляется путем выбора значений для величин, составляющих совокупность числовых параметров.

2.1.1. Параметрическая оптимизация

В зависимости от постановки задачи параметры могут быть действительными числами (например, доля капитала, инвестируемого в определенную стратегию), целыми числами (например, количество дней от момента открытия позиции до истечения опционов или количество базовых активов) или величинами нечисловой природы, но сводимыми к числовым (например, если параметр имеет смысл решения использовать или не использовать определенный тип опционной комбинации, он может быть представлен целым числом со значениями 1 и 0 соответственно). Количество параметров может быть ограничено одним (одномерная оптимизация), но в большинстве случаев их больше (многомерная оптимизация).

Постановка задачи оптимизации может быть безусловной или содержать определенные ограничения. В частности, не все возможные комбинации значений параметров являются допустимыми. В силу существующих ограничений некоторые из них могут быть неприемлемы либо нереализуемы. Такие узлы исключаются из оптимизации. В этом случае говорят об условной оптимизации. Такого рода ограничения могут иметь вид равенств:

x1 + x2 +… + xn = M,

где х принимает значение 0 или 1 в зависимости от того, открывается ли торговая позиция для i-го базового актива. Смысл ограничения в том, что общее число базовых активов в точности равно M.

Ограничения могут принимать вид неравенств:

c1x1 + c2x2 +… + cnxn ≤ K.

Здесь сi – это цена соответствующего опциона, а xi – количество проданных или купленных опционов. При этом знак может указывать, является ли данная позиция длинной (плюс) или короткой (минус). Смысл ограничения в том, что общая стоимость опционного портфеля не превышает установленной величины К.

Ограничения также могут накладываться на диапазон значений, которые может принимать тот или иной параметр (в предыдущей главе мы часто пользовались понятием «область допустимых значений»). Такие ограничения часто используются при разработке автоматизированных торговых стратегий. Они могут накладываться исходя из практических соображений, поскольку сокращение множества допустимых значений позволяет уменьшить количество вычислений и время оптимизации. Кроме того, ограничения могут быть вызваны особенностями разрабатываемой стратегии или требованиями системы управления рисками (например, доля коротких комбинаций в составе портфеля может быть ограничена определенной пороговой величиной). И наконец, ограничения на область допустимых значений могут возникать по причине недоступности данных, необходимых для расчета целевой функции, или невозможности такого расчета для определенных значений параметра.

Для того чтобы избежать путаницы в применении некоторых понятий, часто используемых в литературе при описании оптимизационных процедур, ниже приводится краткое описание смысла, который мы вкладываем в некоторые термины.

Оптимизационное пространство (иногда называемое сеткой) – совокупность всех возможных комбинаций значений параметров формирует полное оптимизационное пространство.

Узел (junction) – наименьшая структурная единица оптимизационного пространства, определяемая уникальной комбинацией значений параметров.

Вычисление – все процедуры, необходимые для расчета целевой функции для одного узла оптимизационного пространства.

Полный оптимизационный цикл – совокупность всех вычислений, производимых в процессе поиска оптимального решения (от старта процедуры оптимизации до остановки алгоритма).

Целевая функция – количественный показатель, выражающий меру полезности определенной комбинации значений параметров с точки зрения разработчика торговой системы (может рассчитываться аналитически или алгоритмически).

Глобальный максимум – узел, имеющий наибольшее значение целевой функции. Глобальных максимумов может быть несколько.

Локальный максимум – узел, расположенный на одной из вершин оптимизационного пространства, но имеющий меньшее значение целевой функции, чем глобальный максимум. Локальных максимумов может быть несколько.

Оптимальное решение – значение параметров и целевой функции узла, на котором остановился алгоритм оптимизации. Оптимальное решение не всегда совпадает с глобальным максимумом. Чем эффективнее методика, тем ближе оптимальное решение к глобальному максимуму.

Робастность оптимального решения – степень изменчивости целевой функции в той области оптимизационного пространства, которая окружает узел оптимального решения. Робастным считается такое решение, вокруг которого располагаются узлы, не уступающие ему (или уступающие лишь незначительно) по значению целевой функции. Хотя понятие «робастность» имеет широкое применение в статистике, экономике и даже биологии, применительно к оптимизации он не имеет строгой математической формализации.

Оптимальная область – область оптимизационного пространства, все узлы которой имеют достаточно высокое значение целевой функции (выше определенного порога). Оптимальных областей может быть несколько. Как правило, данные области располагаются вокруг узлов глобального и/или локального максимума. В отдельных случаях оптимальная область представляет собой приподнятое ровное плато без явно выраженных экстремумов.

Ознакомительная версия. Доступно 17 страниц из 85

1 ... 22 23 24 ... 85
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман», после закрытия браузера.

Комментарии и отзывы (0) к книге "Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман"