Вернемся к двум неразличимым событиям, в которых участвуют те самые две неразличимые частицы. Предположим, точки 3 и 4 — одно и то же место. Тогда высота волны для всего процесса равна В (1→3) х В (2→3) + В (2→3) х В (1→3). Другими словами, высота квантовой волны для всего события — это суммарная высота квантовых волн для варианта, когда частицы движутся «нормально», и варианта, когда они меняются местами.
Предположим, конечная точка находится на одном и том же расстоянии от точек 1 и 2. Получаются две неотличимые возможности, зеркально отображающие друг друга. И если расстояние действительно таково, разумно предположить, что вероятности двух вариантов тоже одинаковые. Иными словами, квадраты высот волн, каждая из которых отображает возможность «своего» варианта, — одна и та же величина.
Итак, стрелы одинаковой длины имеют один и тот же квадрат высоты, независимо от направления, в котором они указывают. Это легко понять, если вы посмотрите на стрелку обыкновенных часов. Квадрат ее длины один и тот же, куда бы она ни показывала — на 2, 11 или 9 часов. А теперь вы вполне можете вообразить стрелы, отображающие квантовые волны каждого из двух вариантов, в виде двух равновеликих стрелок на часах.
Вот здесь-то и зарыта квантовая собака. Не важно, каков угол между стрелами, — квадраты их длин всегда будут одной и той же величиной. Допустим, стрела № 2, отображающая возможность второго варианта, отклонена от стрелы № 1 на х градусов. Вообразим, что мы поменяли местами исходные позиции частиц, входящих в точку 3, — точки 1 и 2. Оп! Стрела № 1 уже выглядит как стрела № 2. Другими словами, она отклонилась от первоначального направления на х градусов. А теперь поменяем местами две исходящие частицы. Происходит то же самое. Стрела № 1 отклоняется еще на х градусов от того положения, которое она занимала, — в сумме получается 2х градусов. Однако перемена сначала исходных мест, а затем исходящих частиц просто-напросто возвращает все к тому, с чего все началось, — восстанавливает первичную ситуацию. Поэтому 2х градусов должны равняться полному обороту, поскольку что-то — что бы то ни было — будет выглядеть как раньше только в одном случае: если это «что-то» совершило полный оборот вокруг оси. Или два оборота. Или три. И далее. Лишь при этом условии стрела будет выглядеть одинаково.
Рассмотрим разные возможности. Если 2х равны полному обороту, тогда х — это половина оборота. Если 2х равны двум полным оборотам, тогда х — один оборот. Если 2х равны трем полным оборотам, тогда х — полтора оборота. Если 2х равны четырем полным оборотам, то х = 2 оборота. Если 2х = 5 полных оборотов, то х = 2,5 оборота. И так далее. Но поворачивать что-либо на полтора или два с половиной оборота — то же самое, что поворачивать на половину оборота. А поворачивать что-либо на два или четыре оборота — все равно что поворачивать на один оборот. Поэтому ясно: существуют всего лишь две возможности. Вероятности двух событий не изменятся, если стрелы, отображающие высоты вероятностных волн для каждого из событий, отстоят друг от друга либо на пол-оборота, либо на полный оборот.
Что это означает в реальном мире? Рассмотрим сначала вторую возможность. Если стрелы отстоят друг от друга на полный оборот, то, понятное дело, они указывают в одном и том же направлении и, таким образом, складываются. Представьте, что вы проходите по стреле пять километров на северо-запад, а затем по аналогичной стреле делаете марш-бросок еще на пять километров, и тоже в северо-западном направлении. Это все равно что пройти на северо-запад по стреле длиной десять километров. Итак, если стрелы отстоят друг от друга на один оборот, высота волны удваивается, а это означает, что вероятность происходящего события в четыре раза больше вероятности каждого события, из которых складывается процесс, по отдельности.
Иначе говоря, какой бы ни была вероятность попадания одной частицы в конкретную точку, вероятность того, что в эту точку попадут обе частицы, в четыре раза больше. Вы, наверное, по наивности полагали, что вероятность может быть только вдвое больше. Ан нет. Оказывается, в случае идентичных частиц вероятность увеличивается. То обстоятельство, что одна частица пребывает в конкретной точке, увеличивает вероятность того, что и вторая частица будет обнаружена здесь же. И между прочим, исход такого события носит куда более обобщающий характер, чем здесь изображено. Тот факт, что одна частица пребывает в определенном «квантовом состоянии» — то есть делает некую определенную вещь, — увеличивает вероятность того, что и другая частица будет делать то же самое. Это можно сравнить с детской игрой «Делай, как я». Или с поведением овечьего стада. Одна овца направляется к дереву в конце поля. Затем к ней присоединяется другая. И еще одна. Глазом не успеешь моргнуть, как уже все стадо устремляется к тому же дереву.
Работа лазера тоже основана на «овечьем поведении». Стоит атому испустить в неком направлении фотон определенной частоты, как сразу увеличивается вероятность, что соседний атом испустит фотон той же частоты и тот полетит «в ногу» с первым. А когда есть два фотона, увеличивается вероятность того, что к ним присоединится третий. В мгновение ока образуется целая лавина фотонов — все мчатся сквозь пространство в одном направлении, и у всех одни и те же свойства. Такая «стимулированная эмиссия» порождает световые волны, бегущие строго «в ногу», их гребни и впадины идеально выстроены, и в этом причина беспрецедентной яркости лазера.
Вот и все, что можно сказать об одной из возможностей, открывающейся двум взаимодействующим неразличимым частицам. А как там обстоят дела с другой возможностью, когда стрелы отстоят друг от друга на пол-оборота? Ну что же, если стрелы разнесены на пол-оборота, они указывают в разных направлениях и, таким образом, гасят друг друга. Вообразите, что вы проходите пять километров по стреле, указывающей на северо-запад, а затем пять километров по стреле, указывающей на юго-восток, то есть в обратном направлении. Вы вернетесь туда, откуда начали свой путь. Поэтому, если две стрелы разошлись на пол-оборота и, следовательно, погасили друг друга, высота волны оказывается равной нулю. Вероятность события отсутствует. Оно просто не произойдет. Точка.
Если две идентичные частицы ведут себя подобным образом, у них нет никаких шансов попасть в одну точку. Говоря более обобщенно, они даже не могут делать одну и ту же вещь. Мало того что их поведение никак не назовешь стадным или «овечьим», они выказывают абсолютно антиобщественный характер и относятся друг к другу с безграничной антипатией. Эта антипатия и носит название «принцип запрета Паули».
Вот ведь что удивительно! Из одного только факта, что две частицы неразличимы, следуют — вследствие интерференции неразличимых возможностей — две поразительно отличающиеся друг от друга модели поведения. С одной стороны, идентичные частицы могут вести себя антиобщественно, а с другой стороны, они могут быть стадом. Вопрос вот в чем: пользуется ли природа этими двумя открывающимися перед ней возможностями? Есть ли частицы, которые демонстрируют стадное, «овечье» поведение, и частицы, глубоко антиобщественные по сути? Ответ: да, есть. Фундаментальные частицы природы действительно распадаются на два отдельных лагеря. Те, которые предпочитают сбиваться в стадо, известны как «бозоны», а те, которые проявляют антиобщественное поведение, именуются «фермионами». Но что определяет принадлежность конкретной частицы к лагерю бозонов или фермионов? Ответ таков: ее «спин».