Топ за месяц!🔥
Книжки » Книги » Домашняя » Математика для гиков - Рафаель Роузен 📕 - Книга онлайн бесплатно

Книга Математика для гиков - Рафаель Роузен

249
0
На нашем литературном портале можно бесплатно читать книгу Математика для гиков - Рафаель Роузен полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 ... 40
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 8 страниц из 40


Бенуа Мандельброт также изучал то, что сейчас называется множеством Мандельброта, это множество комплексных чисел в последовательности, которая не уходит в бесконечность. Когда вы изображаете множество Мандельброта на графике, оно приобретает округлую выпуклую форму, которая интересна математикам отчасти оттого, что чем больше вы увеличиваете какую-то часть, тем больше деталей вы видите. На самом деле, когда вы увеличиваете изображение, вы вновь и вновь начинаете видеть исходную форму множества Мандельброта.


1.2. Измеряем длину береговой линии: не так просто, как кажется
Математическое понятие: система измерений

Что может быть проще измерения длины чего-либо? Если мы, например, хотим узнать длину стола, то для этого можно использовать рулетку. Если мы хотим узнать дистанцию от одного города до другого, мы можем записать показания одометра в машине. Или можно взять карту и с помощью линейки высчитать дистанцию между двумя городами, а потом, используя масштаб карты, перевести сантиметры в километры или дюймы в мили.



Но вот измерение береговой линии – это более сложный процесс. Оказывается, что длина каждой отдельно взятой береговой линии зависит от длины устройства, которое используется для ее измерения. Как правило, чем меньше измерительное устройство, тем длиннее береговая линия. Теоретически, по мере того, как измерительное устройство становится все меньше и меньше, длина береговой линии увеличивается до бесконечности. Как такое возможно?



Как и многие другие формы в природе, береговые линии имеют изрезанную и неправильную форму. Таким образом, чем ближе вы рассматриваете ее, тем больше деталей замечаете. Например, если бы вы смотрели на Северную Америку с высоты спутника, то береговая линия казалась бы относительно гладкой, без особых отличительных черт. Но если вы сами идете по береговой линии, помимо всего прочего, вы замечаете узкие заливы, небольшие выступы берега и камни. А если вы опуститесь на колени, то сможете разглядеть каждый камешек и листик. Если вы воспользуетесь микроскопом, то ваши измерения дойдут и до молекул. На каждом новом уровне детализации ваши единицы измерения уменьшаются от километра до метра, от сантиметра до микрометра; и каждый раз территория измерения увеличивается. Если бы вам надо было измерить береговую линию Великобритании, используя палку длиной 100 км (около 62 миль), то конечная длина составила бы более 2800 км (примерно 1700 миль). Но если бы вы уменьшили палку до 50 км (31 миля), новая длина береговой линии составила бы 3400 км (2100 миль).

Парадокс береговых линий показывает, что хотя математика может предоставить измерения с необыкновенной точностью, она также может показать неопределенность, свойственную самой структуре реальности.


Побережье Канады – самая длинная в мире береговая линия, примерно 152 100 миль. Но вы только представьте, насколько она была бы длиннее, если бы ее измерили рулеткой.


1.3. Пузыри забавны и эффективны
Математическое понятие: объем

Представьте солнечный день в парке в самый разгар лета. Вполне возможно, там есть ребенок, который пускает мыльные пузыри. Неважно, пускаете ли вы их с помощью пластиковой палочки или большого обруча, сделанного из соломинок и веревки, мыльные пузыри – с их мерцающей поверхностью и шаровидной формой – это воздушное воплощение веселья.



Они также являются кладезем для математических размышлений. Математики уже давно знают, что если вы хотите поместить определенный объем воздуха в форму с наименьшей площадью поверхности, то эта форма – шар. А что, если вы хотите поместить два объема воздуха? Есть подозрение, что лучшим способом будет использовать двойной пузырь. Двойной пузырь – это форма, когда два пузыря соединены. (Вы, возможно, видели его, когда использовали пену для ванн.) Обычно пузыри отделены плоской мембраной; если один пузырь больше другого, то мембрана немного выпирает в сторону большего пузыря. В 19 году математики Джоэл Хасс, Майкл Хатчингс и Роджер Щлафли опубликовали статью, в которой доказали, что форма двойного пузыря – это наиболее эффективная форма для заключения двух одинаковых объемов воздуха. Но что, если два объема воздуха разные? Является ли двойной пузырь и в этом случае лучшим способом заключения воздуха в форму с наименьшей площадью поверхности?



Ответ положительный. В 2000 году математики Фрэнк Морган, Майкл Хатчингс, Мануэль Риторе и Антонио Рос опубликовали статью, в которой доказали, что двойной пузырь – это лучший способ заключения любых двух объемов воздуха в форму с наименьшей площадью поверхности. Они показали, что двойной пузырь имеет меньшую площадь поверхности, нежели другие бесчисленные формы, которые могут принять два соединенных между собой пузыря, включая тот странный случай, когда один пузырь обхватывает середину второго, как пончик. (В математике форма пончика имеет специальное название – тор, – которое возникает в подобласти топологии.) Более того, эта математическая команда доказала это без использования компьютера.

Это один из тех случаев, когда математика может использовать человеческий разум для исследования процессов, которые происходят в природе, чтобы разгадать их тайны. Все, что вам нужно, это бумага и карандаш.


Мыльные пузыри не лопаются дольше, чем пузыри из других веществ, как, например, из чистой воды, из-за эффекта Марангони, который описывает явление переноса вещества вдоль границы сред с разным поверхностным натяжением. Он назван в честь итальянского физика Карло Марангони, который опубликовал свою находку в 1865 году. По существу, когда дело касается мыла, эффект Марангони стабилизирует границы пузыря, делая его прочнее и долговечнее, нежели простой пузырь.


1.4. Скрывается ли математика за картинами Джексона Поллока?
Математическое понятие: фракталы

Джексон Поллок создал одни из самых культовых картин XX века, и некоторые исследователи утверждают, что их притягательность берет начало в математике. Если быть совсем точным, то ученые утверждают, что в своих картинах в технике разбрызгивания, которые Поллок закончил в 1940-х, он использовал фракталы, являющиеся геометрическими элементами, которые повторяют друг друга в больших и маленьких масштабах. Некоторые также утверждают, что работы Поллока зачаровывают, так как в них схвачены некоторые фрактальные качества окружающего мира. (Фракталы часто возникают в природе, например в текстуре облаков.)

Ознакомительная версия. Доступно 8 страниц из 40

1 2 3 ... 40
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Математика для гиков - Рафаель Роузен», после закрытия браузера.

Комментарии и отзывы (0) к книге "Математика для гиков - Рафаель Роузен"