Топ за месяц!🔥
Книжки » Книги » Домашняя » От атомов к древу. Введение в современную науку о жизни - Сергей Ястребов 📕 - Книга онлайн бесплатно

Книга От атомов к древу. Введение в современную науку о жизни - Сергей Ястребов

255
0
На нашем литературном портале можно бесплатно читать книгу От атомов к древу. Введение в современную науку о жизни - Сергей Ястребов полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 ... 157
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 32 страниц из 157

Функции белков

Любой отдельный белок — тоже продукт биологической эволюции. Его аминокислотная последовательность, как и вся структура, всегда приспособлена под какую-нибудь строго определенную функцию. Известный биофизик Лев Александрович Блюменфельд писал: “Если бы для описания клетки нам пришлось выбирать между двумя крайними моделями — часовым механизмом и гомогенной химической реакцией в газовой фазе, — выбор был бы однозначен: клетка несравненно ближе к часовому механизму, чем к чисто статистической системе”[32]. Можно добавить, что это относится не только к целой клетке, но и к отдельным макромолекулам, то есть в первую очередь к белкам. Блюменфельд как раз и начинает вышеприведенными словами главу своей книги, посвященную биофизике молекул белка.

Функционирующий белок можно в самом что ни на есть буквальном смысле рассматривать как молекулярную машину, то есть как машину размером с молекулу. По определению Блюменфельда, машина — это конструкция с выделенными внутренними степенями свободы (то есть, попросту говоря, с подвижными частями), использующая собственное механическое движение для передачи силы от одной части системы к другой. Белковая молекула этому определению, безусловно, соответствует. В ней хватает внутренних степеней свободы (множество ковалентных связей, вокруг которых возможны повороты), и она вполне может передавать силу с помощью своих подвижных частей. И многие белки — например, мышечные — постоянно используют это, совершая настоящую механическую работу. Но это далеко не единственное, что белки могут делать.

А что же, собственно, они делают? Самый близкий к истине ответ — да все! Или, во всяком случае, почти все. Функции белков настолько многообразны, что никакое их перечисление, скорее всего, не будет абсолютно полным. Но мы все-таки попробуем назвать главные функции белков, помня про эту оговорку.

* Структурная функция относится к белкам, из которых сделаны те или иные части живых тел. Например, коллаген — белок, образующий механическую основу костей, хрящей и соединительнотканного слоя кожи. Кератин — белок, из которого состоят волосы, ногти и наружный роговой слой кожи. Кристаллины — белки, из которых в основном состоит хрусталик глаза. И так далее.

* Каталитическая функция, связанная с ускорением химических реакций. О ней — чуть ниже.

* Сигнальная функция: белки, предназначенные для передачи информации. Эта функция на редкость многолика. Бывают белки-нейротрансмиттеры, передающие сигналы между нервными клетками. Бывают белки-гормоны, передающие сигналы примерно тем же способом, но через кровь, по всему организму сразу. Бывают белки-рецепторы, которые, наоборот, принимают сигналы, сидя на поверхности клетки. Бывают белки-посредники, обеспечивающие проведение сигнала уже внутри клетки. И это далеко не все возможности, но вникать в детали мы сейчас не будем.

* Транспортная функция. Например, известный всем гемоглобин — это белок, переносящий молекулы кислорода из одной части организма в другую.

* Двигательная функция свойственна белкам, от которых зависит сокращение мышечных клеток животных, но не только им. Например, двигательные структуры одноклеточных организмов — жгутики, реснички, ложноножки — тоже обязательно содержат специальные моторные белки.

* Защитная функция. Это всевозможные яды, а также антитела, то есть белки, выделяемые клетками иммунной системы и убивающие опасных “гостей” организма (например, попавших туда бактерий).

Эти функции, пожалуй, главные. Ясно, что живым существам нужны они все. И тем не менее среди них можно выделить одну совершенно особую функцию, настолько распространенную и важную, что без нее белки как природное явление вообще невозможно представить. Эта функция — каталитическая. Вот о ней стоит поговорить подробнее.

Ферменты

Начнем с простых определений. Вещество, ускоряющее химическую реакцию, но само не претерпевающее в ней стойких изменений, называется катализатором. А катализатор, являющийся белком, называется ферментом. Ускорять он может все что угодно. Все биохимические реакции идут не сами по себе, а с помощью ферментов. Например, даже такой предельно простой процесс, как слияние углекислоты (CO2) и воды (H2O) в молекулу угольной кислоты (H2CO3), все равно катализируется специальным ферментом — карбоангидразой, которая ускоряет его примерно в миллион раз. А для более сложных реакций ферменты тем более необходимы. Можно без особого преувеличения сказать, что ферменты контролируют в живом организме вообще все.

Вещество, являющееся исходным для той реакции, которую катализирует данный фермент, называется его субстратом. Молекула фермента должна войти в контакт с молекулой субстрата и подвергнуть ее некоему действию — например, расщепить надвое, или поменять в ней местами функциональные группы, или сшить что-нибудь ковалентной связью, или разорвать эту связь, — вариантов тут множество. Но в любом случае молекула фермента должна сначала захватить молекулу субстрата, а потом преобразовать ее и высвободить. Часть молекулы фермента, непосредственно контактирующая с молекулой субстрата, называется активным центром. Ферменты — это обычно довольно крупные белки, а в активном центре может быть всего-навсего несколько аминокислот. Поэтому, как правило, активный центр занимает только небольшую часть молекулы фермента (см. рис. 3.9А).

Если говорить совсем примитивно, активный центр — это такое гнездо в молекуле фермента, куда молекула субстрата должна войти, как ключ в замок. Как только она туда попадет, молекула фермента ее захватит и преобразует. Очевидно, что для этого конформация активного центра должна очень точно совпадать с очертаниями молекулы субстрата — в самом деле как замочная скважина с ключом. Это прямо так и называют “моделью ключа и замка”. Правда, на самом деле активный центр фермента, в отличие от механизма замочной скважины, является скорее гибким, чем жестким. При взаимодействии с субстратом его конформация всегда меняется — примерно так, как меняется форма перчатки, когда ее надевают на руку. Модель работы ферментов, учитывающая это, называется “моделью индуцированного соответствия”. Когда реакция завершается, конформация фермента возвращается к прежней.

Биофизики уверены, что во всех этих процессах молекула фермента действует как сложная механическая машина, имеющая множество шарниров, сочленений, поворачивающихся частей и т.п.[33] И это, конечно, впечатляет. “Самонадеянно скажет иной: “Сколочу-ка телегу!” // Но ведь в телеге-то сотня частей! Иль не знает он, дурень?” — писал в поэме “Труды и дни” великий древнегреческий поэт Гесиод[34]. А ведь молекула любого фермента (пусть даже и небольшого) устроена намного сложнее гесиодовой телеги. Причем это будет верно, даже если мы станем рассматривать ее исключительно как механическую машину, игнорируя всю тонкую структуру атомного уровня.

Ознакомительная версия. Доступно 32 страниц из 157

1 ... 18 19 20 ... 157
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «От атомов к древу. Введение в современную науку о жизни - Сергей Ястребов», после закрытия браузера.

Комментарии и отзывы (0) к книге "От атомов к древу. Введение в современную науку о жизни - Сергей Ястребов"