Когда я размышляю о мимолетности моего существования, погруженного в вечность, которая была до меня и пребудет после, о ничтожности пространства, не только занимаемого, но и видимого мною, растворенного в безмерной бесконечности пространств, мне неведомых и не ведающих обо мне, я трепещу от страха и недоуменно вопрошаю себя: почему я здесь, а не там, потому что нет причины мне быть здесь, а не там, нет причины быть сейчас, а не потом или прежде. Кто определил мою судьбу? Чей приказ, чей промысел предназначил мне это время и место?[45]
И сегодня, сталкиваясь с новыми научными открытиями, постоянно подтверждающими бесконечность времени и пространства, многие испытывают тот же ужас, что и Паскаль. Великого философа поддерживала в борьбе с его страхом христианская вера. Но как еще, если не с помощью религии, мы можем понять истинный смысл нашего мимолетного существования в этом мире?
Глава 7. Наука как грандиозное описание Природы
в которой автор рассуждает о том, что наука – это человеческий конструкт, действующий в установленных рамках, но открытый для изменений
Ньютон, Галилей и Кеплер, равно как и многие после них, находили смысл существования в познании законов Природы. Если мир и его законы действительно были созданы Богом, то поиск этих законов и постижение Божественного плана – обязанность каждого верующего. Понимание задумки Творца было высочайшей целью человеческого разума, вооруженного математикой, интуицией и точными данными. Даже сегодня верующие ученые точно так же объясняют, как в их жизни сочетаются наука и религия: чем больше они узнают о Природе, тем сильнее восхищаются результатами Божественного труда. Но даже среди тех, кто не причисляет себя ни к одной религии, распространено представление о природном единстве.
Теперь мы знаем, как Галилей, Кеплер и Ньютон изменили правила игры в свое время, как наука стала больше полагаться на инструменты и приборы и как в эффективности этих устройств отражались ограниченные возможности человека при познании мира. Природные закономерности выражались в математических законах, разработанных на основании внимательных наблюдений за физическими явлениями. С каждым открытием Остров знаний разрастался, но и береговая линия непознанного становилась длиннее. У ученых появлялись новые вопросы, на которые они не могли дать ответ.
Тем не менее начало было положено, и настолько эффективно, что к 1827 году, через 100 лет после смерти Ньютона, научное знание полностью изменилось. Такие понятия, как энергия и законы ее сохранения, электрический ток и магнетизм, были признаны частью природного повествования. На небеса направлялись все более и более мощные телескопы, и физика расширяла свое присутствие. После открытия Урана Уильямом Гершелем в 1781 году число известных человечеству планет достигло семи, новые кометы пересекали небеса, двигаясь по своим огненным орбитам, туманности виделись наблюдателям уже не как бесформенные облака, но как объекты, наполненные невероятной игрой света и цвета. Космос оказался куда более ярким и живым, чем можно было предположить. Древние ионийцы с их представлениями о постоянно меняющейся Вселенной внезапно снова вышли на передний план. Разумеется, нельзя было забывать и о противоположных идеях идеальной неизменности космоса. Для того чтобы понять природу космоса, наука должна была уравновесить понятия симметрии, красоты и сохранения энергии с представлениями об изменениях, распаде и перерождении.
По мере накопления знаний о мире увеличивался и объем непознанного. Приборы, предназначенные для улучшения человеческого зрения, открывали перед наблюдателями неожиданные богатства на всех уровнях, от крошечного до галактического. Если та или иная теория достаточно успешна, она может предсказать существование новых природных объектов и характеристик. Но предвидеть все, чего мы еще не знаем, невозможно. Новые инструменты не только расширяют наше видение мира, но и показывают, сколького мы еще не знаем и не можем предсказать, причем зачастую это происходит весьма впечатляюще. В качестве примера можно привести голландцев Захария Янсена и Антони ван Левенгука, совершивших революцию в микромире и создавших микроскоп примерно в то же время, когда Галилей впервые направил свой телескоп на звезды. В частности, Левенгук исследовал налет, снятый с его собственных зубов, и обнаружил в нем бактерии, открыв, таким образом, целый новый мир микроорганизмов.
Открытие этих крошечных форм жизни сразу же породило лавину вопросов. Насколько маленьким может быть живой организм? В чем разница между живой и неживой материей? Откуда вообще произошла жизнь? У важнейших вопросов макромира, вроде границ Вселенной и возраста нашего мира, нашлись эквиваленты и в микромире. Какова минимальная частица материи? Какова продолжительность ее жизни? Что есть смерть – Божественная установка или природное явление? Возможность того, что неживая материя когда-то превратилась в живую без какого бы то ни было посредничества Творца, пугала многих верующих. Здесь уместно вспомнить четвертое письмо Ньютона к Ричарду Бентли, в котором он отвечает на вопрос теолога о природе гравитации:
Невозможно представить, чтобы неодушевленная грубая материя без посредства чего-нибудь еще нематериального могла действовать и оказывать влияние на другую материю без взаимного соприкосновения с ней… То, что тяготение должно быть врожденным, внутренне присущим материи и существенным для нее…представляется мне столь вопиющей нелепостью, что, по моему убеждению, ни один человек, способный со знанием дела судить о философских материях, не впадет в нее.[46]
Ньютон настаивал на том, что гравитация не может иметь материального объяснения, так как инертная материя остается инертной. В самой материи имелось что-то непостижимое, запускавшее силы притяжения. Возможно, Ньютон объяснял это вмешательством Бога, хотя в своем ответе Бентли по этому поводу он весьма осторожен (если не сказать противоречив): «Тяготение должно вызываться неким агентом, постоянно действующим по определенным законам; материален этот агент или нематериален, я предоставляю судить читателям».