Мы — то есть физик из лаборатории IBM в Цюрихе Джим Гимжевски и я — предложили свое решение этой задачи. Джим был из тех начинающих физиков, которые, как считало руководство IBM, должны были освоить работу с туннельным микроскопом и научиться применять этот прибор во всех областях физики и химии для изучения поверхностей. Прибор, совсем новый, позволял наблюдать явления, разворачивающиеся на поверхностях металлов и полупроводников, — можно было, к примеру, «увидеть», как атом бора (бор используется в качестве примеси, усиливающей нужные свойства полупроводника) влезает в атомную решетку полупроводника и как искажается эта решетка после появления энергичного пришельца. Микроскоп одарял нас прекрасными и весьма поучительными изображениями, но главное — очень уж не хотелось, чтобы весь приоритет заграбастали ловкачи из IBM. Еще в 1988 году, когда я пропускал электрический ток через молекулу, работая вместе с Авирамом в Нью-Йорке, Джим в Цюрихе получил первые изображения большой молекулы — фталоцианина (это такой краситель) — на поверхности серебряной подложки (см. Приложение I).
Джим продолжал возиться с макромолекулами, а я помогал ему объяснять и получаемые картинки, и то, как они возникают. В самом деле туннельный микроскоп формирует изображение, пользуясь облачками электронов, окружающих атомы, а не непосредственно самими атомами. Сигнал микроскопа столь силен, что это электронное облако становится совсем прозрачным для «туннельных» электронов, испускаемых микроскопом. Можно составить карту этой прозрачности, которая пропорциональна электропроводимости туннельного соединения «игла — молекула — поверхность». Нельзя сказать, чтобы такая карта разом становилась бы полноценным изображением — этакой «фотокарточкой молекулы». Нередко карта получалась трудночитаемой, и было непросто понять, что же изображено на картинке, и догадаться, какова форма молекулы; да и сообразить, молекула ли это или какие-то помехи, удавалось не всегда.
В 1995 году мы изучали большую молекулу соединения, называющегося порфирин, и смогли построить карту ее электропроводности, однако так и не поняли некоторые детали этой карты. Джим вместе с молодым физиком по имени Томас Юнг, который входил тогда в нашу группу, занимался изображениями, а я — расчетами, истолковывающими эти картинки. И вот в апреле приходит сообщение от Томаса: «Она движется!»
Вскоре мы с Джимом решили ввести в эксперимент еще один параметр и слегка приподнять тело молекулы над поверхностью, чтобы изменить взаимодействие между молекулой и поверхностью. Мы задались вопросом, как это повлияет на карту проводимости, и поставили несколько новых опытов с молекулой порфирина, оснащенной четырьмя маленькими молекулярными ножками, приподнимавшими молекулу над поверхностью на 0,4 нм. Томасу было поручено получить серию изображений этой молекулы о четырех лапках. Ему, как и Дону Эйглеру, было невмоготу сидеть у экрана компьютера и дожидаться, пока высветится одна картинка, потом другая, и он решил получать изображения на магнитоскопе. С утра он просматривал череду изображений на повышенной скорости и заметил, что несколько четвероногих молекул сместились в сторону наклона. Он тут же отправил мне мейл. Вот когда до нас дошло, как игла микроскопа двигает макромолекулой: надо приделать к молекуле лапки и как следует толкнуть ее иглой. Вроде бы очевидно — во всяком случае, мысль не поражает ни новизной, ни глубиной. Но тогда, в начале 1990-х годов, никто и не думал, что в обращении с объектом меньше нанометра применимы понятия механики — те же, что и в макроскопическом мире. Мы до того были пропитаны квантовой механикой, что не смели и думать о приложении классической механики к нанометрическим масштабам, к одной-единственной молекуле.
Тем не менее эта самая молекула превосходно знала законы механики Ньютона и охотно им подчинялась. Мы показали методами численного моделирования, что если ножки молекулы достаточно высоки, а кончик иглы находится над молекулой на такой высоте, что игла взаимодействует преимущественно с «серединкой», то какая-то доля энергии, движущей иглой, не рассеивается внутри молекулы, а сдвигает ее. Значит, надо учиться располагать иглу над молекулой на правильной высоте. И незачем замораживать металлическую поверхность, как это было в опытах с атомами ксенона. А четырех лапок хватало, чтобы молекула достаточно прочно сцеплялась с поверхностью на новом месте в четырех точках и, значит, не пыталась убежать, даже при комнатной температуре.
Потом было много других молекул, которые мы сдвигали и перемещали по металлическим и полупроводниковым поверхностям. А искусство манипулирования молекулами с тех пор только совершенствовалось. Но возникли новые вопросы, например: а нельзя ли манипулировать атомами и молекулами на поверхности диэлектрика? В самом деле, если поверхность — проводящая, то есть металлическая или полупроводниковая, то игла, молекула и сама поверхность взаимодействуют между собой — электрически. Поверхность похожа на ловушку — или часть ловушки, — в которую попадает атом или или молекула; вторая сторона ловушки — сама игла. А если поверхность не проводит ток (диэлектрик), то взаимодействия нет и о захвате или ловушке говорить не приходится. Нашлось немало исследовательских коллективов, пытавшихся ответить на этот вопрос, и они обнаружили что-то похожее на очень слабое взаимодействие (его назвали ван-дер-ваальсовым). А вот еще вопрос, больше на будущее; пусть атомные и молекулярные манипуляции происходят в двух измерениях на некоторой поверхности; так нельзя ли будет в один прекрасный день выковырять одну молекулу из этой поверхности и потом протащить ее в любом произвольном — по желанию экспериментатора — направлении? А пока умеющая манипулировать атомом в пространстве — и выполняющая желания экспериментатора — игла туннельного микроскопа уже действует как волшебный ключик и открывает тайны законов, правящих миром внизу. Манипулирование атомами позволит ставить неслыханные и невообразимые прежде физические опыты: например, исследовать механические или электрические свойства одиночной молекулы.
ПЕРВЫЕ НАНОФИЗИЧЕСКИЕ ЭКСПЕРИМЕНТЫ
В макроскопическом масштабе выключатель — то есть прерыватель тока — выглядит как металлическая пластинка с пружиной. Опрокидываясь, как коромысло, эта железка замыкает два электрических контакта. В «мире внизу» на роль такого замыкателя годится одиночный атом. В 1987 году Авирам уже предлагал молекулу-выключатель, и мы даже ставили эксперимент, пробуя использовать молекулу в качестве выключателя. В 1993 году. Дон Эйглер предложил вместо молекулы, которая, для того чтобы переключать ток, должна менять свою форму, взять какой-нибудь атом и заставить его работать «коромыслом», замыкающим или размыкающим электрические контакты. Смещением атома можно было бы управлять, прикладывая напряжение в несколько вольт между иглой и поверхностью подложки: меняя напряжение, заставить атом двигаться туда, куда захочется экспериментатору. Нет напряжения, и ток ничтожно мал; стало быть, выключатель — в положении «выключено». Когда же атом, опрокинувшись, прикоснется к кончику иглы, ток вырастет в полсотни раз — и положение выключателя переменится на «включено». Итак, состояние атома-переключателя можно менять, то есть переводить из положения «включено» в положение «выключено», и наоборот. Вот и пришло время на весь мир объявить о создании первого атомного выключателя. Десятью годами спустя Франческа Мореско из Берлинского университета построила выключатель на молекуле, которая у нее работала коромыслом-замыкателем. Использовать в переключателе молекулы, а не атомы, кажется очень заманчивым: у молекулы есть известные химические свойства, которые можно менять, меняя тем самым ее взаимодействие с поверхностью и, значит, опрокидывая эту молекулу, причем очень быстро.