Но в 1905 году Эйнштейн внес путаницу в ньютоново абсолютное время. Согласно специальной теории относительности, темп, в котором идут часы, даже если они являются идеальными копиями друг друга, зависит от того, как они движутся. В обычных обстоятельствах этот эффект неощутим, но когда часы разгоняются до скорости, близкой к световой, он становится очень заметным. По Эйнштейну, любые часы, движущиеся вдоль своей мировой линии, идут в своем темпе. Отсюда Минковский пришел к определению нового понятия собственного времени.
Просто для иллюстрации: когда Заяц достает свои часы (тоже доброкачественные и честные), они показывают собственное время его мировой линии, равное 1 часу и 36 минутам[30]. Хотя они стартовали и финишировали в одних и тех же точках пространства-времени, мировые линии Черепахи и Зайца имеют разные собственные времена.
Прежде чем продолжать обсуждение собственного времени, полезно немного поразмышлять об обычных расстояниях, измеряемых вдоль кривых с помощью мерной ленты. Возьмите любые две точки в пространстве и соедините их кривой линией. Насколько далеки эти точки, если мерить вдоль линии? Очевидно, что ответ зависит от кривой. Вот две кривые, соединяющие одни и те же точки (a и b), но имеющие совсем разную длину. Вдоль верхней кривой расстояние составляет пять дюймов, а вдоль нижней — восемь дюймов.
Нет, конечно, ничего удивительного в том, что разные кривые, проведенные от a до b, имеют разную длину.
Теперь вернемся к задаче измерения мировых линий в пространстве-времени. Вот рисунок типичной мировой линии. Заметьте, что она искривлена. Это означает, что скорость вдоль траектории не остается постоянной. В данном примере быстро движущаяся частица замедляется. Точками отмечены моменты тиканья часов. Каждый интервал соответствует одной секунде.
Обратите внимание, что на более пологих участках кажется, что секунды тянутся дольше. Это не ошибка, а отражение открытого Эйнштейном знаменитого растяжения времени: быстро движущиеся часы идут медленнее часов, которые движутся не так быстро или покоятся.
Рассмотрим две кривые мировые линии, соединяющие два события. Эйнштейн, как обычно, мысленно экспериментируя, представил себе двух близнецов — я буду называть ихАлисой и Бобом, — родившихся одновременна Событие их рождения обозначим а. В момент рождения близнецов разделяют; Боб остается дома, а Алису с чудовищной скоростью увозят прочь. Спустя некоторое время Эйнштейн разворачивает Алису и направляет ее домой. Наконец, Боб и Алиса вновь встречаются в точке b.
При рождении Эйнштейн дал близнецам одинаковые прекрасно синхронизированные карманные часы. Когда Боб и Алиса, наконец, встретились в точке Ь, они сравнили показания своих часов и обнаружили то, что повергло бы в недоумение Ньютона. У Боба отросла длинная седая борода, тогда как Алиса была сама молодость. Судя по их карманным часам, собственное время вдоль мировой линии оказалось у Алисы намного меньше, чем у Боба. Так же как обычное расстояние между двумя точками зависит от соединяющей их кривой, собственное время между двумя событиями зависит от соединяющей их мировой линии.
Заметит ли Алиса во время путешествия, что ее часы замедлились? Ни в коей мере. Те часы — не единственная вещь, испытавшая замедление; то же самое произошло с ее сердцебиением, работой ее мозга и всего метаболизма. Во время путешествия Алисе не с чем сравнивать ход своих часов, но когда она наконец встретилась с Бобом во второй раз, она обнаружила, что значительно моложе его. Этот «парадокс близнецов» озадачивает студентов-физиков уже более ста лет.
Есть одна любопытная деталь, которую вы могли заметить самостоятельно. Боб путешествует через пространство-время по прямой, в то время как Алиса перемещается по кривой траектории. И тем не менее собственное время вдоль траектории Алисы короче, чем вдоль траектории Боба. Это пример контринтуитивного свойства геометрии пространства Минковского: мировая прямая линия имеет самое продолжительное собственное время между двумя событиями — измеряется вдоль прямой линии. Это вам пригодится для перенастройки своих представлений.
Общая теория относительности
Как и Риман, Эйнштейн верил, что геометрия — искривленная и меняющаяся. Причем он имел в виду геометрию не одного лишь пространства, но и пространства-времени. Следуя за Минковским, Эйнштейн по одной оси отложил время, а другую сопоставил всем трем измерениям пространства, но, вместо того чтобы изображать пространство-время на плоскости, он стал представлять себе искривленную поверхность со впадинами и выпуклостями. Частицы по-прежнему движутся вдоль мировых линий, а часы отсчитывают собственное время, но геометрия пространства-времени стала куда менее правильной.
Законы Эйнштейна
Как это ни удивительно, во многих отношениях законы физики выглядят проще в искривленном пространстве-времени, чем в ньютоновской физике. Возьмем, например, движение частиц. Ньютоновские законы начинаются с принципа инерции, который гласит:
В отсутствие действия сил каждый объект остается в состоянии равномерного движения.
В этом внешне простом законе за выражением «равномерное движение» скрываются две самостоятельные идеи. Во-первых, «равномерное движение» подразумевает движение вдоль прямой линии в пространстве. Но Ньютон имел в виду нечто большее: равномерность движения также подразумевает постоянство, неизменность скорости, то есть отсутствие ускорения[31].