Количество «как таковое» здесь противопоставляется количеству как указанию в том числе на возможность реализации данных количеств.
Численность – у Гегеля означает не подведенный количественный итог («численность населения»), а способность числа указывать на свой состав. Скажем, численность 6 это 2+2+2 или 1*6 или 2*3. Впрочем, употребление этого термина содержит в себе возможность и привычного нам понимания.
Что касается численности, то следует еще рассмотреть подробнее, каким образом многие «одни», из которых она состоит, заключены в границе. О численности правильно говорится, что она состоит из «многих», ибо «одни» находятся в ней не как снятые, а суть в ней, только положенные вместе с исключающей границей, к которой они безразличны. Но граница не безразлична к ним. При [рассмотрении нами] наличного бытия отношение к нему границы оказалось прежде всего таким, что наличное бытие как утвердительное оставалось по сю сторону своей границы, а граница, отрицание, находилась вне его, у его края; точно так же во многих «одних» прерыв их и исключение других «одних» выступает как определение, которое имеет место вне охватываемых «одних». Но там оказалось, что граница пронизывает наличное бытие, простирается столь же далеко, как оно, и что вследствие этого нечто ограничено по своему определению, т. е. конечно. – В числе как количестве представляют себе, например, сто так, что только сотое «одно» ограничивает «многие» таким образом, что они составляют сто. С одной стороны, это правильно; с другой же, из ста «одних» никакое не обладает преимуществом, так как они только одинаковы; каждое из них есть в такой же мере сотое, как и другие; все они, следовательно, принадлежат к той границе, благодаря которой данное число есть сто; для своей определенности это число не может обойтись ни без одного из них; прочие «одни», следовательно, не составляют в сравнении с сотым «одним» такого наличного бытия, которое находилось бы вне границы или лишь внутри ее, вообще было бы отлично от нее. Численность не есть поэтому некоторое множество в противоположность охватывающему, ограничивающему «одному», а сама составляет это ограничение, которое есть некое определенное количество; «многие» составляют одно число, одну двойку, один десяток, одну сотню и т. д.
Прерыв – не простое «прерывание», но способность данным числом исчислить разные изменения начального числа. Так, 100 будет прерывом не только для числа 100, но и для числа 0,01 как одной сотой или для 100 миллионов или 100 дюжин или 2 в 100 степени. Иметь место – в таком случае означает использоваться вне самой числовой последовательности, скажем, если 100 входит в последовательность, где будут и другие натуральные числа, включая 100 и 100 миллионов, то в последовательность, где есть 0,01, оно не входит. Имение места у Гегеля – это чаще всего существование вне ряда, который мы назначаем для данного класса явлений.
Итак, ограничивающее «одно» есть определенность в отношении другого, отличение данного числа от других. Но это отличение не становится качественной определенностью, а остается количественным, относится лишь к сравнивающей внешней рефлексии. Число как «одно» остается возвращенным к себе и безразличным к другим. Это безразличие числа к другим есть его сущностное определение; оно составляет его в-себе-определенность, но в то же время и его собственную внешность. – Число есть, таким образом, нумерическое «одно» как абсолютно определенное «одно», которое имеет в то же время форму простой непосредственности и для которого поэтому соотношение с другим совершенно внешнее. Как такое «одно», которое есть число, оно, далее, имеет определенность (поскольку она есть соотношение с другим) как свои моменты внутри самого себя, в своем различии между единицей и численностью, и численность сама есть множество «одних», т. е. в нем самом имеется этот абсолютно внешний характер. – Это противоречие числа или определенного количества вообще внутри себя составляет качество определенного количества, – качество, в дальнейших определениях которого это противоречие получает свое развитие.
Гегель обращает внимание на противоречие между тем, что новое число получается в результате внешнего прибавления, но при этом оно при любом употреблении применяется как целое. Например, 2,5 получается как 2+1/2, но как число используется одинаково для обозначения 2,5 яблока или 2,5 метра независимо от того, измеряются ли им предметы или меры.
А. ПРЯМОЕ ОТНОШЕНИЕ
1. В отношении, которое как непосредственное есть прямое отношение, определенность одного определенного количества заключается в определенности другого определенного количества и наоборот. Имеется лишь одна определенность или граница обоих, которая сама есть определенное количество, – показатель отношения.
Показатель – у Гегеля это слово ближе к нашему «показания» (термометра, барометра), но только не при измерении фактов, а при их создании или установлении. Например, целое число – показатель того, что им подсчитаны целые, а не дробные предметы.
2. Показатель есть некоторое определенное количество. Но в своей внешности он соотносящий с собой в самом себе качественно определенный квант лишь постольку, поскольку он в самом себе имеет отличие от себя, свое потустороннее и инобытие. Но это различие определенного количества в самом себе есть различие единицы и численности; единица есть самостоятельная определенность (Fur sich Bestimmtsein), численность же – безразличное движение по отношению к определенности, внешнее безразличие определенного количества. Единица и численность были сначала моментами определенного количества; теперь в отношении, поскольку оно реализованное определенное количество, каждый из его моментов выступает как собственное определенное количество, и оба – как определения его наличного бытия, как ограничения по отношению к определенности величины, которая помимо этого есть лишь внешняя, безразличная определенность.