К тому времени вещество в крупных регионах Вселенной уже начинало понемногу объединяться. В местах его скопления возрастала и гравитация, вследствие чего вещества становилось еще больше. В таких регионах начали формироваться галактические суперкластеры, в то время как остальные регионы оставались относительно пустыми. Последние фотоны, оттолкнувшиеся от каких-либо электронов в пределах таких регионов скопления вещества, приобретали новый, чуть более холодный спектр по мере того, как покидали все увеличивающееся гравитационное силовое поле, которое частично забирало себе их энергию.
Реликтовое излучение действительно позволяет обнаружить места, в которых температура чуть выше или чуть ниже среднего значения; разница, как правило, не составляет больше одной стотысячной градуса. Такие теплые и прохладные участки отмечают собой наиболее рано сформировавшиеся скопления вещества. Мы знаем, как вещество выглядит сегодня, потому что можем наблюдать за галактиками, их скоплениями и сверхскоплениями. Чтобы понять, как образовались эти космические системы, мы прощупываем реликтовое излучение — реликвию далекого прошлого, которая до сих пор наполняет собой Вселенную. Анализ распределения реликтового излучения — это что-то вроде космической френологии: мы считываем бугорки на «черепе» молодой Вселенной и по ним определяем поведение не только Вселенной-младенца, но и Вселенной-взрослого.
Дополняя общую картину другими наблюдениями локальных и удаленных уголков Вселенной, астрономы могут составить представление о самых разных фундаментальных свойствах реликтового излучения. Сравнивая распределение размеров и температур чуть более теплых холодных его областей, к примеру, мы можем прикинуть силу гравитации в более ранние периоды существования Вселенной, а значит, и то, как быстро вещество скапливалось в тех иных регионах. Отсюда мы можем вычислить, сколько именно обычного вещества, темной материи и темной энергии включает в себя Вселенная (4, 23 и 73 % соответственно). Тут уже становится совсем легко определить, будет ли Вселенная расширяться до бесконечности и будет ли это расширение ускоряться замедляться с течением времени.
Обычное вещество — это то, из чего сделаны все мы. Оно является источником гравитации и может поглощать, выделять или другим образом взаимодействовать со светом. Темная материя, как мы увидим в главе 4, представляет собой субстанцию неизвестной нам природы, которая, будучи источником гравитации, не взаимодействует со светом каким-либо известным нам образом. А темная энергия, знакомство с которой ждет нас в главе 5, ускоряет расширение Вселенной, заставит ее увеличиваться в размерах быстрее, чем в случае если бы темной энергии в ней не было вовсе. Френологические исследования показывают: сегодняшние космологи понимают, как вела себя новорожденная и юная Вселенная, однако в ней гораздо больше того, о чем они не имеют ни малейшего понятия.
И все же, невзирая на существенные пробел в понимании устройства Вселенной, сегодня у науки о космосе есть якорь — и более увесистый, чем когда-либо. Ведь реликтовое излучение несет на себе отпечаток того самого портала, через который все мы когда-то прошли, чтобы стать частью этого мира.
Открытие реликтового излучения привнесло в космологию новый уровень точности: оно подтвердило собой заключение, изначально полученное путем наблюдений за далекими галактиками, о том, что Вселенная расширяется уже миллиарды лет. Четкая и подробная карта реликтового излучения, впервые созданная для маленьких участков неба с помощью инструментов и телескопов, увлекаемых запущенными с Южного полюса аэростатами вверх, а затем и для целого небосвода с помощью зонда микроволновой анизотропии Уилкинсона (или спутника WMAP[16]), закрепила за космологией отдельное место за столом экспериментальной науки. До того как мы с вами подойдем к концу нашего космологического повествования, мы еще не раз вернемся к спутнику WMAP, в 2003 году представившему первые результаты своих исследований.
Космологи — ребята с большим самомнением, иначе им вряд ли хватило бы наглости вычислять, с чего когда-то началась сама Вселенная. Правда, для новой эры наблюдательной космологии, возможно, будет характерна более скромная и менее раскованная позиция. Каждое новое наблюдение, каждая новая крупица данных могут пойти на пользу оказаться во вред имеющимся теориям. С другой стороны, наблюдения обеспечивают базовый фундамент космологии, который учеными во многих других научных областях достается в разы проще, потому что им достаточно тех обширных результатов наблюдений, которые можно получить в лабораторных условиях. В то же время новые данные почти наверняка смогут развенчать некоторые небылицы, родившиеся когда-то за неимением возможности получить результаты наблюдений, позволивших бы их подтвердить или опровергнуть.
Нет такой науки, которая развивалась бы, не оперируя точными данными. И мы приветствуем космологию в рядах точных наук!
Глава 4
Да будет тьма!
Наиболее распространенная из известных сил природы — гравитация — одновременно наиболее и наименее изученное нами явление. Нужно было родиться Исааком Ньютоном, самым выдающимся и влиятельным мыслителем тысячелетия, чтобы осознать, что это таинственное «действие на расстоянии» силы притяжения — прямое следствие естественных, заложенных природой свойств каждой крупицы вещества и что силу притяжения между двумя объектами можно описать с помощью довольно простого алгебраического уравнения. Нужно было родиться Альбертом Эйнштейном, самым выдающимся и влиятельным мыслителем XX века, чтобы показать, что это «действие на расстоянии» можно определить еще более точно как искажение канвы пространства и времени, возможное при любом сочетании вещества и энергии. Эйнштейн продемонстрировал, что теория Ньютона требует ряда корректировок, чтобы максимально точно описывать гравитацию, например, когда речь идет об определении степени преломления лучей света, огибающих крупное препятствие. Хотя уравнения Альберта Эйнштейна более замысловаты, чем ньютоновские, в этом мире они действительно весьма удачно пристраивают знакомое и столь любимое нами вещество. То самое вещество, которое можно увидеть, потрогать, ощутить и иногда попробовать на вкус.
Когда родится преемник первых двух гениальных мыслителей, неизвестно, мы уже полвека с лишним ждем, чтобы кто-нибудь наконец рассказал нам, как же так выходит, что главным источником измеренной нами во Вселенной гравитации является субстанция, которой никто не видел, не щупал, не осязал и не пробовал на вкус. Может, излишек гравитации вообще никак не связан с каким-либо типом вещества, может, ее источником является что-то принципиально иное. Как бы то ни было, мы не имеем об «этом» ни малейшего понятия. Сегодня мы ничуть не ближе к разгадке, чем в 1933 году, когда проблема так называемой недостающей массы (или скрытой массы) была впервые озвучена астрономами, измерявшими скорость движения галактик, чья гравитация оказывала воздействие на ближайшие соседние галактики. Эта тема была подвергнута более глубокому анализу в 1937 году астрофизиком болгаро-швейцарско-американского происхождения Фрицем Цвикки. Он преподавал в Калифорнийском технологическом институте в США более 40 лет и был известен не только своими обширными познаниями о космосе, но и цветистой манерой выражать свои мысли и удивительной способностью настраивать против себя своих коллег.