Ознакомительная версия. Доступно 25 страниц из 122
A Hadean to Paleoarchean geodynamo recorded by single zircon crystals // Science. 2015. V. 349. № 6247. P. 521–524.
395
Singer B. S., Jicha B. R., Mochizuki N. and Coe R. S. Synchronizing volcanic, sedimentary, and ice core records of Earth’s last magnetic polarity reversal // Science Advances. 2019. V. 5. № 8. P. eaaw4621.
396
NASA. Magnetic pole reversal happens all the (geologic) time. 2012. November 30, https://www. nasa. gov/topics/earth/features/2012-poleReversal. html
397
Piper J. D. A planetary perspective on Earth evolution; lid tectonics before plate tectonics // Tectonophysics. 2013. Vol. 589 (C). P. 44–56.
398
O’Neill C. and Debaille V. The evolution of Hadean—Eoarchaean geodynamics // Earth and Planetary Science Letters. 2014. V. 406. P. 49–58.
399
Lammer H. et al. Origin and evolution of the atmospheres of early Venus, Earth and Mars // Astronomy and Astrophysics Review. 2018. V. 26. № 1. P. 1–72.
400
Bell E. A., Boehnke P., Harrison T. M. and Mao W. L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon // Proceedings of the National Academy of Sciences. 2015. V. 112. № 47. P. 14518–14521.
401
House C. H. Penciling in details of the Hadean // Proceedings of the National Academy of Sciences. 2015. V. 112. № 47. P. 14410–14411.
402
Robb L. J., Knoll A. H., Plumb K. A., Shields G. A., Strauss H. and Veizer J. The Precambrian: The Archean and Proterozoic Eons // Gradstein F. M. and Ogg J. G. (eds.). A Geologic Time Scale: Cambridge, Cambridge University Press, 2004. P. 131.
403
Gomes R., Levison H. F., Tsiganis K. and Morbidelli A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets: Nature. 2005. V. 435. № 7041. P. 466.
404
Mikhail S. and Sverjensky D. A. Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere: Nature Geoscience. 2014. V. 7. № 11. P. 816–819.
405
Robert F. The origin of water on Earth // Science. 2001. V. 293. № 5532. P. 1056–1058.
406
Sarafian A. R., Nielsen S. G., Marschall H. R., McCubbin F. M. and Monteleone B. D. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source: Science. 2014. V. 346. № 6209. P. 623–626.
407
NASA. Why do we have oceans? https://oceanservice.noaa.gov/facts/why_oceans.html
408
Rosing M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland // Science. 1999. V. 283. № 5402. P. 674–676.
409
Nutman A. P., Bennett V. C., Friend C. R., Van Kranendonk M. J. and Chivas A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures // Nature. 2016. V. 537. № 7621. P. 535.
410
Messing C. G., Neumann A. C. and Lang J. C. Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida // Palaios. 1990. V. 5. № 1. P. 15–33.
411
Gauger T., Konhauser K. and Kappler A. Protection of phototrophic iron(II)-oxidizing bacteria from UV irradiation by biogenic iron(III) minerals: Implications for early Archean banded iron formation // Geology. 2015. V. 43. № 12. P. 1067–1070.
412
Campbell I. H. and Allen C. M. Formation of supercontinents linked to increases in atmospheric oxygen // Nature Geoscience. 2008. V. 1. № 8. P. 554.
413
Ibid.
414
Robb, Knoll, Plumb, Shields, Strauss, and Veizer, 2004. P. 132.
415
Næraa T., Scherstén A., Rosing M. T., Kemp A. I. S., Hoffmann J. E., Kokfelt T. F. and Whitehouse M. J. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago // Nature. 2012. V. 485. № 7400. P. 627.
416
Evans D. A. D. and Pisarevsky S. A. Plate tectonics on early Earth? Weighing the paleomagnetic evidence // Condie K. C. and Pease V. (eds.) When Did Plate Tectonics Begin on Planet Earth? // Geological Society of America Special Paper 440. 2008. P. 249–263.
417
Адиро́ндак – горный массив в системе Аппалачей в США между впадинами озеро Шамплейн – река Гудзон на востоке, рекой Мохок на юге и рекой Св. Лаврентия на северо-западе, был открыт в 1609 г. французским исследователем С. Шамплейном. // АДИРОНДАК // Большая Российская энциклопедия. М., 2005. Т. 1. С. 230. — Примеч. перев.
418
McLelland J., Daly J. S. and McLelland J. M. The Grenville orogenic cycle (ca. 1350–1000 Ma): An Adirondack perspective // Tectonophysics. 1996. V. 265. № 1–2. P. 1–28.
419
Mosher S. Tectonic evolution of the southern Laurentian Grenville orogenic belt // Geological Society of America Bulletin. 1998. V. 110. № 11. P. 1357–1375.
420
Scotese, 2009.
421
Gumsley A. P., Chamberlain K. R., Bleeker W., Söderlund U., de Kock M. O., Larsson E. R. and Bekker A. Timing and tempo of the Great Oxidation Event // Proceedings of the National Academy of Sciences. 2017. V. 114. № 8. P. 1811–1816.
422
Ogg, Ogg and Gradstein, 2016. P. 23.
423
Ibid. P. 30.
424
Hoffman P. F. et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology // Science Advances. 2017. V. 3. № 11. P. e1600983.
425
Sohl L. E., Chandler M. A., Jonas J. and Rind D. H. Energy and heat transport constraints on tropical climates of the Sturtian Snowball Earth // AGU Fall Meeting Abstracts. 2014, PP43C-1487.
426
Narbonne G. M. and Gehling J. G. Life after snowball; the oldest complex Ediacaran fossils: Geology. 2003. V. 31. № 1. P. 27–30.
427
Matthews S. C. and Missarzhevsky V. Small shelly fossils of late Precambrian and early Cambrian age; a review of recent work // Journal of the Geological Society of London. 1975.
Ознакомительная версия. Доступно 25 страниц из 122