Ответ возникает перед нами еще до того, как возник вопрос Практическое приложение обнаруживается, когда его не ищут, и можно сказать, что весь прогресс человечества зиждется на этом принципе Практические вопросы чаще всего удается разрешить с помощью уже существующих теорий Редко случается так, что важные математические изыскания предпринимаются непосредственно ввиду той или иной практической пользы; мотивировкой их является то же стремление, которое служит основой всякой научной деятельности, — стремление узнать и понять.
Г.X. Харди на заключительных страницах своей странной «Апологии» высказался по этому поводу более резко и откровенно:
Я никогда не делал ничего «полезного». Ни одно из моих открытий не произвело и не имеет шансов произвести, будь то явным или неявным образом, к добру или ко злу, ни малейшей перемены в удобствах жизни При оценке по стандартам практики значение моей математической жизни равно нулю.
В отношении теории простых чисел применимо высказывание Адамара «Ответ возникает перед нами еще до того, как возник вопрос», а заявление Харди уже не верно. С конца 1970-х годов простые числа стали приобретать все большее значение в создании методов шифровки — как в военных, так и в гражданских целях. Способы, позволяющие проверить, является ли данное большое число простым, способы разложения больших чисел на простые множители, способы производства простых чисел огромной величины — все эти вопросы действительно приобрели исключительно e практическое звучание в последние два десятилетия XX века. Теоретические результаты, включая и несколько из тех, что получил Харди, сыграли существенную роль на пути к этим достижениям, которые, среди прочего, позволяют использовать кредитную карту для покупки товаров через Интернет. Разрешение вопроса о ГР, несомненно, повлекло бы дальнейшее развитие в этой области, переведя в разряд истинных все те бессчетные теоремы о простых числах, которые начинаются словами «В предположении, что Гипотеза Римана верна…», и подстегнув дальнейшие открытия.[210]
И конечно, если физики и правда преуспеют в идентификации «римановой динамики», то это изменит наше понимание физического мира.
К сожалению, невозможно предсказать, к чему приведет такое изменение. Даже умнейшие люди не в состоянии высказывать подобные предсказания, а тем, кто их все же высказывает, доверять не следует. Вот математик за работой всего около 100 лет назад:
Каждое утро я сажусь перед чистым листом бумаги. В течение дня, с коротким обеденным перерывом, я все смотрю и смотрю на чистый лист. Порой, когда наступает вечер, он все еще пуст. Два лета — 1903 и 1904 годов — останутся в моей памяти как период полного интеллектуального тупика . Вполне вероятно, что весь остаток моей жизни может пройти за разглядыванием этого чистого листа бумаги.
Это из автобиографии Бертрана Рассела. Терзавшая его проблема состояла в попытке найти определение «числа» на языке чистой логики. В самом деле, что именно обозначает «три»? Немецкий логик Готлоб Фреге ранее предложил ответ, но Рассел нашел изъян в рассуждениях Фреге и искал способ заделать дыру.
Если бы вы спросили Рассела в течение одного из этих летних периодов отчаяния, мог ли предмет его затруднений привести к каким-нибудь практическим приложениям, то он бы разразился смехом. Его занятия являли собой чистейший образец чистейшего интеллекта — до такой степени, что даже сам Рассел, математик по образованию, временами недоумевал, чего ради он этим занимается. «Казалось, что негоже взрослому человеку проводить свое время за такими никчемными вещами…» — замечал он. На самом деле работа Рассела в конце концов привела к появлению Principia Mathematica — ключевого момента в современных исследованиях оснований математики. Среди плодов этого исследования к настоящему времени числятся и победа во Второй мировой войне (или, во всяком случае, победа меньшей ценой, чем это в противном случае произошло бы), и машины, подобные той, на которой я набираю эту книгу.[211]