Ознакомительная версия. Доступно 12 страниц из 58
Изменение работы сердца при физической нагрузке проявляется в первую очередь увеличением ЧСС. Частота сердечных сокращений отражает «физиологическую цену» достижения полезных результатов. Переход от брадикардии к тахикардии начинается уже через 1 с после начала упражнений; у нетренированных людей предел эффективного учащения варьируется от 150 до 170 уд./мин. Чем тренированнее спортсмен, тем этот предел выше, достигая 180–200 уд./мин. Большее учащение – до 220230 уд./мин – можно наблюдать только у отдельных лиц. Сердечно-сосудистая система адаптируется к систематическим мышечным нагрузкам путем перестройки своих параметров, как в покое, так и под воздействием однократных нагрузок.
Мышечная нагрузка вызывает закономерные изменения капиллярного обмена. При срочной адаптации к мышечным нагрузкам увеличивается площадь обменной поверхности за счет раскрытия новых, ранее не функционировавших капилляров, наблюдается перераспределение кровотока в пользу активно функционирующих мышечных групп и его ускорение. Повышается скорость и объем фильтрации воды и белка из капилляров в ткани. Это приводит к нарастанию вязкости крови во время мышечной нагрузки, что повышает гидростатическое сопротивление в капиллярах. Увеличение артериального давления и заметные изменения венозного способствуют выраженному подъему гидростатического давления в обменных сосудах и усилению процесса фильтрации. Кроме того, фильтрация жидкости через стенку капилляров ведет к аккумуляции воды в тканях. Это увеличивает внесосудистую циркуляцию жидкости, что, в свою очередь, ускоряет транспорт макромалекул и ведет к удалению метаболитов от активно работающих органов. Это осуществляется как венозной, так и лимфатической системами.
Кровь, циркулирующая по кровеносным сосудам вместе с лимфой и межтканевой жидкостью, составляет внутреннюю среду организма человека.
Основой срочной адаптации системы крови являются увеличение объема циркулирующей крови и следующие за ним сдвиги в количестве ее ферментных элементов. Долгосрочная адаптация связывается с усилением кроветворной функции костного мозга под воздействием физической нагрузки.
Система крови для аэробного компонента выносливости характеризуется количеством эритроцитов и гемоглобина.
Многие авторы указывают на то, что при систематическом применении умеренных мышечных нагрузок происходит снижение вязкости крови и плазмы и повышение эритроцитов.
Увеличение количества эритроцитов является одной из важных приспособительных реакций организма человека к многократным мышечным нагрузкам. Его адаптационное значение заключается в увеличении кислородной емкости крови, что, в свою очередь, ведет к повышению выносливости. Также наблюдается нарастающее увеличение объема циркулирующей крови преимущественно за счет прироста объема циркулирующих эритроцитов. Однако общее содержание в организме эритроцитов и гемоглобина возрастет только к концу 2-й недели тренировки, а затем поддерживается на новом уровне. Исследователи считают, что в связи с прогрессивным возрастанием объема выполняемых мышечных нагрузок происходит развитие костного мозга.
В результате тренировки на выносливость повышается объем плазмы и увеличение текучести крови. С теоретической точки зрения повышение текучести крови может сопровождаться улучшением доставки кислорода в ткани во время мышечных нагрузок у тренированных спортсменов.
Тренировка приводит к увеличению буферных свойств ткани головного мозга, а также потенциальных возможностей различных, и в частности окислительных, ферментных систем. В результате этого при интенсивной мышечной деятельности содержание богатых энергией фосфорных соединений в головном мозге более длительное время удерживается на нормальном уровне, что является существенным для нормального функционирования ЦНС и отдаления наступления утомления.
В ходе работы ЦНС тренированного человека обеспечивает осуществление более быстрых и совершенных приспособительных реакций, направленных как на сохранение, так и на повышение работоспособности.
Все изменения деятельности организма координируются и регулируются центральной нервной системой. В нее поступает информация о событиях, происходящих как внутри организма, так и во внешней среде. На основании этой информации вырабатываются «приказы» тканям, органам и системам о необходимых перестройках в их деятельности. Эти «приказы» передаются двумя способами: 1) в виде нервных импульсов, идущих к органам-исполнителям и тканям по нервным волокнам; 2) путем изменения активности желез внутренней секреции.
Железы внутренней секреции, или эндокринные железы, участвуют в процессах развития и роста организма, в мобилизации его сил, в регуляции обменных процессов, обеспечивающих восстановление энергетических ресурсов, обновление тканевых элементов и развитие организма.
Эндокринные железы не имеют протоков, образованные ими гормоны поступают непосредственно в кровь, протекающую через железу. Характерной чертой гормонов является их высокая биологическая активность и специфичность действия, а все расстройства в деятельности эндокринных желез вызывают понижение общей работоспособности.
Эндокринными железами являются:
1. Гипоталамус.
2. Гипофиз, или нижний придаток мозга, который состоит из задней доли (нейрогипофиза), промежуточной доли и из передней доли (аденогипофиза).
3. Вилочковая железа, или тимус.
4. Щитовидная и паращитовидные железы.
5. Поджелудочная железа, или панкреас.
6. Надпочечники, которые состоят из мозгового и коркового слоев.
7. Половые железы.
8. Эндокриноактивная ткань почек.
Воздействие тренировки на железы внутренней секреции заключается в следующем:
1) увеличивается масса желез, активно функционирующих во время физических нагрузок, за исключением массы вилочко-вой железы, которая уменьшается;
2) снижается реакция желез на небольшие нагрузки;
3) достигается возможность значительной мобилизации функции желез;
4) становится возможным сохранение высокой функциональной активности железы в течение длительного периода.
Влияние гормонов на обменные процессы реализуется путем изменения:
1) активности ферментов;
2) проницаемости клеточных мембран;
3) скорости усвоения белков.
Для энергетического снабжения организма эндокринные железы и гормоны влияют на увеличение количества циркулирующей в плазме глюкозы: поджелудочная (глюкагон), мозговой слой надпочечников (адреналин, норадреналин), надпочечники (кортизол). Гормон роста (гипофиз) повышает мобилизацию свободных жирных кислот и снижает клеточное потребление глюкозы (больше глюкозы остается для энергообеспечения). Гормоны щитовидной железы (тироксин и трийодтиронин) способствуют расщеплению глюкозы и жиров. Чем выше интенсивность или объем физической нагрузки, тем больше выделяется катехоламинов: адреналина, норадреналина (надпочечники), повышая гликогенолиз (расщепление гликогена до глюкозы) и липолиз (окисление жиров – триглицеридов). Глюкоза в клетках усваивается с помощью инсулина (поджелудочная железа). Триглицериды расщепляются до свободных жирных кислот с помощью специального фермента – липазы, активируемой четырьмя гормонами, вырабатываемыми двумя железами: надпочечниками (кортизол, адреналин и норадреналин) и гипофизом (гормон роста). Также участвуют гормоны щитовидной железы (тироксин и трийодти-ронин).
Ознакомительная версия. Доступно 12 страниц из 58