Топ за месяц!🔥
Книжки » Книги » Разная литература » Занимательная астрономия - Яков Исидорович Перельман 📕 - Книга онлайн бесплатно

Книга Занимательная астрономия - Яков Исидорович Перельман

44
0
На нашем литературном портале можно бесплатно читать книгу Занимательная астрономия - Яков Исидорович Перельман полная версия. Жанр: Книги / Разная литература. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 ... 50
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 10 страниц из 50

размеры Солнца то увеличиваются, то уменьшаются, и отношение размеров, конечно, в точности отвечает отношению расстояний Земли от Солнца в моменты наблюдений. Пусть Солнце помещается в фокусе F1 эллипса (рис. 18). Земля бывает в точке А орбиты около 1 июля, и тогда мы видим наименьший диск Солнца; его величина в угловой мере — 31′28′′. В точке В Земля бывает около 1 января, и тогда диск Солнца кажется нам под наибольшим углом — 32′32″. Составим пропорцию:

из которой можно образовать так называемую производную пропорцию

или

Значит,

т. е. эксцентриситет земной орбиты равен 0,017. Достаточно, как видите, тщательно измерить видимый диск Солнца, чтобы определить форму земной орбиты.

Покажем теперь, что орбита Земли весьма мало отличается от круга. Вообразим, что мы начертили ее на огромном чертеже, так что большая полуось орбиты равна 1 м. Какой длины окажется другая — малая полуось эллипса? Из прямоугольного треугольника OCF1 (рис. 18) имеем

Но c/a есть эксцентриситет земной орбиты, т. е. 1/60. Выражение а2 — b2 заменяем через (а — b) (а + b), а (а + b) — через 2а, так как b мало отличается от а.

Имеем

и, значит,

Мы узнали, что на чертеже даже столь крупного масштаба разница в длине большой и малой полуосей земной орбиты не превышает 1/7 мм. Тонкая карандашная линия имеет толщину, бóльшую, чем эта величина. Значит, мы практически не делаем никакой ошибки, когда чертим земную орбиту в форме круга.

Куда следует поместить изображение Солнца на таком чертеже? На сколько надо отодвинуть его от центра, чтобы оно оказалось в фокусе орбиты? Другими словами, чему равно расстояние OF или OF1 на нашем воображаемом чертеже? Расчет несложен:

Центр Солнца должен на чертеже отстоять на 1,7 см от центра орбиты. Но так как само Солнце должно быть изображено кружком в 1 см поперечником, то только опытный глаз художника заметил бы, что оно помещено не в центре круга.

Практический вывод из сказанного тот, что на рисунках можно чертить орбиту Земли в виде круга, помещая Солнце чуть сбоку от центра.

Может ли столь незначительная асимметрия в положении Солнца влиять на климатические условия Земли? Чтобы выяснить, в чем могло бы обнаружиться подобное влияние, произведем опять мысленный опыт, обратимся к «если бы». Допустим, что эксцентриситет земной орбиты возрос до более заметной величины — например, до 0,5. Это значит, что фокус эллипса делит его полуось пополам; такой эллипс будет иметь вытянутость примерно куриного яйца. Ни одна из орбит главных планет Солнечной системы не обладает столь значительным эксцентриситетом; орбита Плутона, самая вытянутая, имеет эксцентриситет 0,25. (Но астероиды и кометы движутся и по более вытянутым эллипсам.)

Если бы путь Земли был вытянут сильнее

Вообразим же, что орбита Земли заметно вытянута и фокус делит ее большую полуось пополам. На рис. 19 изображена эта новая орбита. Земля по-прежнему бывает 1 января в точке А, ближайшей к Солнцу, а 1 июля в точке В, наиболее удаленной. Так как FB втрое больше, чем FA, то в январе Солнце было бы втрое ближе к нам, чем в июле. Январский поперечник Солнца втрое превышал бы июльский, а количество посылаемого тепла было бы в январе в 9 раз больше, чем в июле (обратно пропорционально квадрату расстояния). Что осталось бы тогда от нашей северной зимы? Только то, что Солнце стояло бы низко на небе и дни были бы короткие, а ночи долгие. Но холодов не было бы: большая близость Солнца с избытком покрыла бы невыгодные условия освещения.

Рис. 19. Какую форму имела бы орбита Земли, если бы эксцентриситет земной орбиты был равен 0,5. В фокусе F — Солнце

Сюда присоединится еще обстоятельство, вытекающее из второго закона Кеплера, который гласит, что площади, описываемые радиусом-вектором в равные промежутки времени, равны.

«Радиусом-вектором» орбиты называется прямая линия, соединяющая Солнце с планетой, в нашем случае — с Землей. Так как Земля перемещается по орбите, то движется и радиус-вектор, который описывает при этом некоторую площадь; закон Кеплера устанавливает, что части площади эллипса, описываемые в равные времена, равны между собой. В точках своего пути, близких к Солнцу, Земля должна двигаться по орбите быстрее, чем в точках, удаленных от Солнца; иначе площадь, описанная коротким радиусом-вектором, не могла бы равняться площади, образованной более длинным радиусом-вектором (рис. 20).

Применяя сказанное к нашей воображаемой орбите, заключаем, что в декабре — феврале, когда Земля значительно ближе к Солнцу, она должна двигаться по своей орбите быстрее, чем в июне — августе. Другими словами, зима должна на севере промчаться скоро, лето же, напротив, должно тянуться долго, как бы вознаграждая этим за скупо изливаемую Солнцем теплоту.

Рис. 20. Иллюстрация второго закона Кеплера: если дуги АВ, CD и EF пройдены планетой в одинаковые промежутки времени, то заштрихованные площади равны

На рис. 21 дается более точное представление о продолжительности времен года при наших воображаемых условиях. Эллипс изображает форму новой земной орбиты (с эксцентриситетом 0,5). Числа 1–12 делят путь Земли на части, пробегаемые ею в равные промежутки времени; по закону Кеплера доли эллипса, на которые он рассекается начерченными в нем радиусами-векторами, равны по площади.

Рис. 21. Как двигалась бы вокруг Солнца Земля по сильно вытянутому эллипсу (расстояния между соседними точками, отмеченными цифрами, проходятся планетой за равные промежутки времени — за месяц)

В точке 1 Земля бывает 1 января, в точке 2–1 февраля, в точке 3–1 марта и т. д. Из чертежа видно, что весеннее равноденствие (А) должно наступить на подобной орбите уже в первых числах февраля, а осеннее (В) — в конце ноября. Значит, зимнее время года длилось бы в Северном полушарии лишь два с небольшим месяца — от конца ноября до начала февраля. Период же долгих дней и высокого полуденного Солнца в странах Северного полушария — от весеннего до осеннего равноденствия — охватывал

Ознакомительная версия. Доступно 10 страниц из 50

1 ... 9 10 11 ... 50
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Занимательная астрономия - Яков Исидорович Перельман», после закрытия браузера.

Комментарии и отзывы (0) к книге "Занимательная астрономия - Яков Исидорович Перельман"