Топ за месяц!🔥
Книжки » Книги » Домашняя » Журнал "Наука. Величайшие теории" №2. Самая притягательная сила природы. Ньютон. Закон всемирного тяготения - Антонио Дуран 📕 - Книга онлайн бесплатно

Книга Журнал "Наука. Величайшие теории" №2. Самая притягательная сила природы. Ньютон. Закон всемирного тяготения - Антонио Дуран

365
0
На нашем литературном портале можно бесплатно читать книгу Журнал "Наука. Величайшие теории" №2. Самая притягательная сила природы. Ньютон. Закон всемирного тяготения - Антонио Дуран полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.
Книга «Журнал "Наука. Величайшие теории" №2. Самая притягательная сила природы. Ньютон. Закон всемирного тяготения - Антонио Дуран» написанная автором - Антонио Дуран вы можете читать онлайн, бесплатно и без регистрации на knizki.com. Жанр книги «Журнал "Наука. Величайшие теории" №2. Самая притягательная сила природы. Ньютон. Закон всемирного тяготения - Антонио Дуран» - "Книги / Домашняя" является наиболее популярным жанром для современного читателя, а книга "Журнал "Наука. Величайшие теории" №2. Самая притягательная сила природы. Ньютон. Закон всемирного тяготения" от автора Антонио Дуран занимает почетное место среди всей коллекции произведений в категории "Домашняя".

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики. Ньютон, которого многие считают воплощением рациональности, на самом деле был человеком сложным; он много раз вступал в яростные споры со знаменитыми современниками, такими как Лейбниц или Гук, и с не меньшим рвением занимался наукой, алхимией и теологией. Прим. OCR: Обозначение sqrt() - используется в тексте для замены отсутствующего в наборе знака "корень квадратный".

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 ... 36
Перейти на страницу:

Введение

Начиная с середины XVI до конца XVII века в Европе произошло то, что историки назвали научной революцией, во время которой научная традиция, унаследованная от Античности и Средневековья, впервые начала подвергаться сомнениям. Кульминационным моментом этого процесса, который затронул практически все сферы науки, стала публикация в 1687 году ключевой работы Исаака Ньютона «Математические начала натуральной философии».

Расцвет эпохи Возрождения и изобретение в 1440-х годах печатного станка позволили распространить по всей Европе образцы греческой научной мысли, которые сохранились и были доработаны во многом благодаря арабам. В это же время впервые более чем за тысячу лет состоялись научные прорывы, которые в качественном отношении превзошли знания Античности. Достижения в сфере математики особенно впечатляли: повсеместное распространение индо-арабской системы счисления, основанной на использовании позиционной нумерации и нуля, обеспечили потенциал, недоступный древним грекам. С другой стороны, развитие алгебры и создание Декартом аналитической геометрии позволили воспользоваться всеми возможностями алгебраических принципов для изучения и решения геометрических задач.

Не стоит забывать и о систематическом использовании математиками XVII века бесконечно малых чисел для измерения площадей, касательных к кривым или центров тяжестей.

Наиболее значительные результаты были получены в астрономии. Греческие представления о небесной механике и космологии, усовершенствованные арабами, были разрушены польским астрономом Николаем Коперником, который заявил, что в системе планет Землю необходимо рассматривать движущейся вокруг Солнца, а не считать, что она неподвижно расположена в центре Вселенной. На неподвижность Земли указывают не только наши ощущения, но и Библия, а также греческая традиция во главе с Аристотелем и Птолемеем. И все же идеи Коперника распространялись все шире, пока не превратились в основу для новой астрономической модели.

Начали меняться и способы научного познания. Помимо чисто теоретических исследований, которые опирались на авторитет классических ученых и средневековых схоластов, все большую роль стал играть эксперимент. Пора научного легковерия миновала, и на передний план вышел ученый-скептик: мыслитель новой формации искал доказательства утверждениям своих учителей посредством наблюдений и экспериментов.

Легкость расчетов, которой немало способствовала индоарабская система счисления, делала все более важными количественные понятия по сравнению с традиционным преобладанием качественных. Лучше всего эту перемену иллюстрируют труды Галилея о падении тел. К вопросу о том, что заставляет тела падать,- центральному вопросу в аристотелевой физике – Галилей добавил другие задачи, решения которых имеют более практический характер и поддаются измерению, например: какую дистанцию преодолеет тело в зависимости от времени падения? Такой подход, объединяющий теоретический дискурс с экспериментальным и вычислительным, направил физику в новое русло, ведущее к новым плодотворным открытиям.

Неслучайно в разгар научной революции были разработаны такие важные инструменты, как микроскоп и телескоп, точность которых намного превзошла все изобретения греков. Виртуозное использование Галилеем телескопа и последующая интерпретация увиденного привели к почти полному триумфу идей Коперника.

Именно в этот период научных потрясений на сцену вышел Исаак Ньютон. Его вклад в науку огромен, и в значительной степени именно благодаря его трудам был завершен революционный процесс, начатый Коперником за сто лет до рождения Ньютона.

В математике он обобщил существующие методы, представлявшие собой на тот момент запутанный клубок мелких теорий, разработанных в первой половине XVII века, чтобы получить универсальный инструмент – анализ бесконечно малых. Этот раздел в математике охватывает такие понятия, как производная, интеграл и предел, и имеет широчайшее применение в науке и технике. Без всякого сомнения, речь идет о самом мощном математическом инструменте в истории науки.

Вклад Ньютона в развитие физики и астрономии потрясает еще больше. В то время физика земли и неба, в соответствии с аристотелевой доктриной, были отдельными областями. Никто не думал, что движением планет и траекторией пушечного ядра управляют одни и те же законы. «Небесную» физику осваивали Коперник, получивший достаточный авторитет, и Кеплер, который точно описал движение планет. Однако законы движения Кеплера не имели никакой теоретической основы, и без ответа оставался главный вопрос: почему планеты движутся по небу именно таким образом?

Нечто подобное происходило с «земной» физикой: Галилей показал, что падающий камень преодолевает расстояние, пропорциональное квадрату времени, и что пушечное ядро движется по параболе. Однако ученые пока не знали, что за всеми этими открытиями стоят одни и те же законы.

Это показал Ньютон в своей главной работе «Математические начала натуральной философии». Он сформулировал закон всемирного тяготения: сила притяжения между двумя точками, разделенными расстоянием, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними, – и показал, как с его помощью объяснить и движение планет вокруг Солнца, и траекторию летящего снаряда. Созданная ученым картина мира объясняла естественные феномены, например приливы и отливы.

Галилей раскрыл сущность математической структуры Вселенной в своем знаменитом изречении:

«Философия написана в великой книге Вселенной, всегда открытой перед нашими глазами. Но ее невозможно прочитать, не понимая ее языка и символов. Эта книга написана на языке математики».

Ньютон первым превратил это выражение в реальность, поскольку для физических исследований ему была необходима математика. Все доказательства физических законов, которые мы находим в «Математических началах натуральной философии», обоснованы с помощью математических инструментов.

К достижениям Ньютона в области математики и физики следует добавить и его вклад в оптику. Широко известны эксперименты ученого с призмами, которые позволили показать, что белый свет не однороден, как принято было считать, а состоит из цветных лучей с разными показателями преломления.

Ньютон считал эксперимент важным научным методом. Ученый всегда отличался пытливым умом, это стало понятно уже в детстве, когда он с увлечением конструировал макеты мельниц и других механизмов. Можно сказать, что его инженерный талант ничем не уступал необыкновенной научной одаренности. Ньютон построил рефлекторный телескоп, благодаря чему был принят в Лондонское королевское общество; но он не просто усовершенствовал традиционную конструкцию, а использовал зеркала вместо увеличительных стекол и при создании телескопа решил множество технических проблем. Ему принадлежит и метод полировки медных пластин, что позволило использовать их в качестве зеркал: ученый создал новое химическое соединение, которое применил как абразив.

1 2 ... 36
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Журнал "Наука. Величайшие теории" №2. Самая притягательная сила природы. Ньютон. Закон всемирного тяготения - Антонио Дуран», после закрытия браузера.

Комментарии и отзывы (0) к книге "Журнал "Наука. Величайшие теории" №2. Самая притягательная сила природы. Ньютон. Закон всемирного тяготения - Антонио Дуран"